Loading

Clinical Research in Infectious Diseases

An Aquaglyceroporin as a New Drug Target in Leishmania

Editorial | Open Access | Volume 1 | Issue 1

  • 1. Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, USA
+ Show More - Show Less
Corresponding Authors
Rita Mukhopadhyay, Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, AHC1 # 418D, Miami FL, 33199, USA, Tel: 305-3480692.
Citation

Mukhopadhyay R (2014) An Aquaglyceroporin as a New Drug Target in Leishmania. Clin Res Infect Dis 1(1): 1001.

INTRODUCTION

Aquaporins belong to MIPs (Major Intrinsic Protein), a large super-family of integral membrane proteins. They are present throughout the five kingdoms, including bacteria, archaea, protista, fungi, plantae, animalia and even viruses [1]. The ubiquitous nature of this channel underlines its importance in life processes. However, most of these aquaporins are redundant and null mutants for any one of them from bacteria to mammals do not cause lethality [2,3] with one exception from the parasite protozoan Leishmania (Mukhopadhyay and Ouellette, unpublished observation). The aquaporin family can be functionally divided into two sub-groups, the orthodox aquaporins, which are water-specific channels, and aquaglyceroporins, which allow the transport of water, glycerol, metalloids and other small, uncharged solutes. These channels are all tetrameric complexes with each monomer functioning independently; unlike ion channels the center of the quaternary structure is impermeable. Each monomer contains six transmembrane helices and two short half-helices which meet in the middle of the membrane to form a pseudo-transmembrane span. The comparison between the crystal structures of E. coli aquaglyceroporin GlpF and human aquaporin AQP1 showed a larger pore for aquaglyceroporins accommodating the larger glycerol molecule [4]. The constriction at the pore mouth is termed as aromatic arginine (ar/R) constriction. An additional constriction in the middle of the pore is the Asn-Ala-Pro (NPA) region. These two NPA motifs form the central of the pore and act as a proton filter acting as the capping amino acids at the positive ends of helices B and E and act as hydrogen donors to the oxygen atoms of passing permeants [5]. The aquaglyceroporins facilitate the transport of wide variety of uncharged solutes in addition to water. These include glycerol, urea, dihydroxyacetone (DHA), methylglyoxal (MG), polyols and metalloids such as trivalent arsenic (AsIII) and antimony (SbIII) [6]. In mammals, thirteen AQPs (0-12) have been identified so far. Among them four are classical aquaglyceroporins AQP3, 7, 9 and 10 [7]. A number of aquaporins have been identified in parasitic protozoa from a single aquaglyceroporin in Plasmodium, to three in Trypanosoma brucei, five in Leishmania, two in Toxoplasma and one in Cryptosporifium [8-11]. A common feature of the parasite AQPs is that they are generally better water transporters when compared to E. coli (GlpF) and mammalian ones. It appears that protozoal aquaglyceroporins are bifunctional and conduct both water and glycerol at reasonable rates [12]. Among five members of the AQP family in Leishmania, we identified and characterized the first aquaglyceroporin AQP1. AQP1 is involved in the accumulation of metalloids in Leishmania promastigotes and amastigotes along with water, glycerol, methylglyoxal, glyceraldehyde to name a few [9]. The other four AQPs are not involved in metalloid transport (Mukhopadhyay, unpublished data) and are closer to classical aquaporins. Channels such as AQPs are at the interphase of host parasite interactions and could be attractive drug targets and/or mediator of specific drugs such as arsenic and antimony. Protozoan parasites cause deadliest of diseases throughout the world. The situation is worse in developing countries because of poor hygiene and infrastructure.

Leishmaniasis is a protozoan parasitic infection ranging from self healing cutaneous lesions to non-healing mucocutaneous and visceral ailments caused by Leishmania spp. The disease is endemic in parts of 88 countries across five continents - the majority of the affected countries are in the tropics and subtropics. Approximately 12 million people worldwide are affected by leishmaniasis and 2 million new cases are considered to occur annually. The Leishmania parasite exists in two morphologically distinct forms: promastigotes and amastigotes. The promastigotes reside in the intestinal tract of the sandfly vector and have a slipper like body with an anterior flagellum. Inside the mammalian host, the promastigote forms of the parasites are transformed into amastigotes that appear as small, oval-shaped, aflagelleted structures, and reside in macrophages and other mononuclear phagocytes. The female phlebotomine sandflies are solely responsible for the transmission of Leishmania parasites amongst vertebrate hosts. Transmission of leishmaniasis could be anthroponotic that is transmission from human to human through the sandfly vector, where humans are the sole reservoir host. The disease can also spread from animals to humans (zoonosis), in this case, domestic animals (dogs) and wild animals (foxes, jackals, rodents, hyraxes) serve as the reservoir hosts. The disease in humans has been classified in three different forms, each having a broad range of clinical manifestations. Visceral leishmaniasis (VL) is the most severe form of the disease and is fatal if left untreated. VL is caused by Leishmania donovani, Leishmania infantum or Leishmania chagasi and is characterized by irregular bouts of fever, substantial weight loss, swelling of the spleen and liver, and anemia. Approximately 90% of the 500,000 new cases of VL reported annually occur in Bangladesh, Brazil, India, Nepal and Sudan. Cutaneous leishmaniasis (CL) is caused by a variety of species including Leishmania major, Leishmania tropica, Leishmania mexicana, and Leishmania panamensis. CL is characterized by skin lesions on the exposed parts of the body, such as the face, arms and legs, causing serious disability and leaving the patient permanently scarred. It is the most common form of the disease with 1-1.5 million new cases reported annually worldwide, and 90% of all CL cases are reported from Afghanistan, Brazil, Iran, Peru, Saudi Arabia and Syria. Mucocutaneous leishmaniasis (MCL) due to Leishmania braziliensis infection produces lesions which can lead to extensive and disfiguring destruction of mucous membranes of the nose, mouth and throat cavities. 90% of MCL cases occur in Bolivia, Brazil and Peru [13]. The US military is not immune to Leishmania infection. During operations Desert Storm and Desert Shield in the 90s, many soldiers contacted cutaneous leishmaniasis and some viscerotropic leishmaniasis, a visceral and deadlier form of the disease caused by the cutaneous species L. tropica. Visceral infection due to L. tropica in a veteran of Operation Desert Storm was presented two years after leaving Saudi Arabia [14]. Incubation periods of up to ten years have been reported for L. donovani, the causative agent of the classical visceral form of the disease (VL) (the predominant species in Pakistan, and the Afghanistan-Pakistan border). Additionally, the parasite can masquerade as inflammatory diseases such as Wegener granulomatosis for up to 6-7 years (Brahn et al 2010, [15]. L. tropica is also endemic to the Iraq and Afghanistan region where US military is currently deployed. A burst of cutaneous infection cases took place in the US military between 2003 and 2005, so much so that Lt. Col. Peter Weina, director of Leishmania diagnostics at Walter Reed Army Medical Center commented in Nature Medicine, “This is probably the largest outbreak of leishmaniasis that the US military has ever seen” (February, 2004, Vol:10, page: 110). Additionally, Leishmania/HIV co-infection is currently emerging as an extremely serious, new disease and is being considered a real threat in various parts of the world. VL has been widely recognized as an opportunistic infection among persons who are immunosuppressed, particularly in patients infected with human immunodeficiency virus [16].

The first line compounds against all forms of leishmaniasis are the two pentavalent antimonials, sodium stibogluconate (Pentostam) and meglumine antimoniate (Glucantime). However, clinical resistance to this treatment is becoming prevalent [17,18]. In fact, more than 50% of VL cases in NorthEast India are resistant to pentostam [19]. Leishmania resistant to trivalent antimony has also been reported [20]. The second line of anti-leishmanial drugs includes amphotericin B and pentamidine. Recently, alkyl-lysophospholipids (ALP) such as miltefosine and edelfosine, originally developed as anticancer drugs, have shown significant antiproliferative activity against Leishmania [21]. Miltefosine is the first oral drug that has been used against VL in India, including antimony resistant cases [22]. Other drugs in various stages of clinical trials include allopurinol, atovaquone, fluconazole, paromomycin, and sitamaquine.

The L. major genome encodes for five aquaporins: LmAQP1, LmAQPα, LmAQPβ, LmAQPγ, and LmAQPδ. While LmAQP1 shows strong similarity to bacterial aquaporins the other L. major aquaporins (LmAQP α-δ) are closer to plant aquaporins [12]. This is a unique peculiarity of L. major aquaporins, since other parasitic aquaporins known to date are either bacteria- or plant-like, and not a mixed population [12]. The roles of the other L. major aquaporins have not yet been determined although they are not involved in metalloid transport (Mukhopadhyay, unpublished data). The Leishmania major aquaglyceroporin (LmAQP1) is adventitiously permeable to antimonite [Sb(III)], an activated form of Pentostam or Glucantime [23]. Besides the two metalloids arsenite [As(III)] and Sb(III), LmAQP1 is also permeable to water; its water conduction capacity is 65% of that of the classical water channel, human AQP1 [9]. In contrast to Plasmodium and Trypanosome aquaglyceroporins (AQPs) that are inhibited by mercurials, water movement through LmAQP1 is not inhibited by mercuric chloride, and it is therefore a mercurial independent water channel. LmAQP1 also conducts glycerol, glyceraldehyde, dihydroxyacetone, and sugar alcohols. Expression of LmAQP1 is limited exclusively to the flagellum of promastigotes, while in amastigotes it is found in the flagellar pocket, rudimentary flagellum, and contractile vacuoles. LmAQP1 plays an important physiological role in water and solute transport, volume regulation and osmotaxis [9]. Disruption of one of the two LmAQP1 alleles in L. major conferred a 10-fold increase in resistance to Sb(III) [23]. LmAQP1 mRNA levels are significantly less in either the Sb(III) or As(III) resistant L. major and Leishmania tarentolae cells, indicating that downregulation of LmAQP1 leads to drug resistance [24]. Later these findings were corroborated in field isolates from India [25] and Nepal [26]. Therefore, LmAQP1 plays a major role in Leishmania cellular physiology and drug resistance. However, downregulation of LmAQP1 is not the sole cause of drug resistance in Leishmania. Several other factors include trypanothione (TSH), antimonate reductase, MRP homologue PGPA and an antimonyTSH conjugate exporter in the plasma membrane. In absence of a crystal structure, our structure-function studies have defined the pore mouth residues of LmAQP1. We have shown that an extracellular loop C residue glutamate 152 helps the channel to differentiate between metalloids and glycerol [27]. In a recent paper, we have also shown that alanine 163 in loop C is localized near the pore mouth, critical for channel function and alter drug sensitivity of the parasite [28]. Despite several attempts we have not been able to generate the null mutant, which supports the idea of LmAQP1 being an essential gene for Leishmania survival and growth (R. Mukhopadhyay and M. Ouellette, unpublished observation).

Hence, Leishmania AQP1 probably becomes the best target to control the parasite growth. On one hand, overexpression of this channel will make the parasite hypersensitive to the traditional antimony containing drugs (Figure 1)

Figure 1:

may be even at lower concentrations combating the toxicity. On the other, just shutting the channel down may cause adverse effect to the general wellbeing of the parasite. Identification of pharmacological agents that induce AQP1 expression by manipulating the regulatory pathways is a feasible goal. Our present data show that induction of AQP1 makes the wild type and drug resistant field isolates susceptible to lower concentrations of antimonials. Thus co-administration of inducing agents of AQP1 along with pentavalent antimony will overcome drug resistance and avoid toxicity. However, control of gene expression is complicated in Leishmania. Genes of this parasite are transcribed as a large polycystronic group and regulated at the post transcriptional level largely by the 3’UTR, although controlling cis-elements and trans acting factors are largely unknown. In a recent paper we have shown that Mitogen Activated Protein Kinase 2 (MAPK2 regulated AQP1 expression positively [29]. The positive regulation of Leishmania AQP1 by an MAP kinase might provide a new approach for drug targeting. Since protozoan MAP kinases are distantly related to human MAP kinases, it might be possible to design compounds that specifically target the protozoan enzymes. One of the approaches might be the development of small molecule inhibitors of Leishmania MPK2 activity. Such compounds would prevent phosphorylation of the protozoan AQP1 channel, resulting in its increased turnover, and consequently, exposing the parasites to osmotic stress. Another approach would be to look for small molecule inducers of MPK2, which will stabilize AQP1, and thereby either resensitize drug resistant isolates to Sb(III) and/or reduce the effective dose, eliminating drug toxicity.

REFERENCES

1. Thomas P. Jahn, Gerd P. Bienert. MIPs and their role in the exchange of metalloids. Landes Bioscience. Austin. 2010.

2. Mukhopadhyay R, Beitz E. Metalloid transport by aquaglyceroporins: consequences in the treatment of human diseases. Adv Exp Med Biol. 2010; 679: 57-69.

3. Fadiel A, Isokpehi RD, Stambouli N, Hamza A, Benammar-Elgaaied A, Scalise TJ. Protozoan parasite aquaporins. Expert Rev Proteomics. 2009; 6: 199-211.

4. Yasui M. Molecular mechanisms and drug development in aquaporin water channel diseases: structure and function of aquaporins. J Pharmacol Sci. 2004; 96: 260-263.

5. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, et al. Structural determinants of water permeation through aquaporin-1. Nature. 2000; 407: 599-605.

6. Bhattacharjee H, Rosen BP, Mukhopadhyay R. Aquaglyceroporins and metalloid transport: implications in human diseases. Handb Exp Pharmacol. 2009; : 309-325.

7. Hara-Chikuma M, Verkman AS. Physiological roles of glycerol-transporting aquaporins: the aquaglyceroporins. Cell Mol Life Sci. 2006; 63: 1386-1392.

8. Beitz E. Aquaporin water and solute channels from malaria parasites and other pathogenic protozoa. ChemMedChem. 2006; 1: 587-592.

9. Figarella K, Uzcategui NL, Zhou Y, LeFurgey A, Ouellette M, Bhattacharjee H, et al. Biochemical characterization of Leishmania major aquaglyceroporin LmAQP1: possible role in volume regulation and osmotaxis. Mol Microbiol. 2007; 65: 1006-1017.

10. Montalvetti A, Rohloff P, Docampo R. A functional aquaporin co-localizes with the vacuolar proton pyrophosphatase to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi. J Biol Chem. 2004; 279: 38673-38682.

11. Chen XM, O’Hara SP, Huang BQ, Splinter PL, Nelson JB, LaRusso NF. Localized glucose and water influx facilitates Cryptosporidium parvum cellular invasion by means of modulation of host-cell membrane protrusion. Proc Natl Acad Sci U S A. 2005; 102: 6338-6343.

12. Beitz E. Aquaporins from pathogenic protozoan parasites: structure, function and potential for chemotherapy. Biol Cell. 2005; 97: 373-383.

13. Bhattacharjee HMR. Drug resistance in Leishmania. In: M.O.a.S. Lerner, (Ed.), Antimicrobial drug resistance: Principles and Practice for the Clinic and Bench. Humana Press. 2009.

14. Magill AJ, Grogl M, Johnson SC, Gasser RA Jr. Visceral infection due to Leishmania tropica in a veteran of Operation Desert Storm who presented 2 years after leaving Saudi Arabia. Clin Infect Dis. 1994; 19: 805-806.

15. Brahn E, Pegues DA, Yao Q, Craft N. Mucocutaneous leishmaniasis masquerading as Wegener granulomatosis. J Clin Rheumatol. 2010; 16: 125-128.

16. Choi CM, Lerner EA. Leishmaniasis: recognition and management with a focus on the immunocompromised patient. Am J Clin Dermatol. 2002; 3: 91-105.

17. Faraut-Gambarelli F, Piarroux R, Deniau M, Giusiano B, Marty P, Michel G, et al. In vitro and in vivo resistance of Leishmania infantum to meglumine antimoniate: a study of 37 strains collected from patients with visceral leishmaniasis. Antimicrob Agents Chemother. 1997; 41: 827-30.

18. Jackson JE, Tally JD, Ellis WY, Mebrahtu YB, Lawyer PG, Were JB, et al. Quantitative in vitro drug potency and drug susceptibility evaluation of Leishmania ssp. from patients unresponsive to pentavalent antimony therapy. Am J Trop Med Hyg. 1990; 43: 464-80.

19. Sundar S, More DK, Singh MK, Singh VP, Sharma S, Makharia A, et al. Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis. 2000; 31: 1104-1107.

20. Ouellette M, Haimeur A, Grondin K, Légaré D, Papadopoulou B. Amplification of ABC transporter gene pgpA and of other heavy metal resistance genes in Leishmania tarentolae and their study by gene transfection and gene disruption. Methods Enzymol. 1998; 292: 182- 93.

21. Urbina JA. Lipid biosynthesis pathways as chemotherapeutic targets in kinetoplastid parasites. Parasitology. 1997; 114 Suppl: S91-99.

22. Sundar S, Jha TK, Thakur CP, Engel J, Sindermann H, Fischer C, et al. Oral miltefosine for Indian visceral leishmaniasis. N Engl J Med. 2002; 347: 1739-1746.

23. Gourbal B, Sonuc N, Bhattacharjee H, Legare D, Sundar S, Ouellette M, et al. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem. 2004; 279: 31010-31017.

24. Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R, Ouellette M. Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol. 2005; 57: 1690-1699.

25. Mandal S, Maharjan M, Singh S, Chatterjee M, Madhubala R. Assessing aquaglyceroporin gene status and expression profile in antimony-susceptible and -resistant clinical isolates of Leishmania donovani from India. J Antimicrob Chemother. 2010; 65: 496-507.

26. Decuypere S, Rijal S, Yardley V, De Doncker S, Laurent T, Khanal B, et al. Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrob Agents Chemother. 2005; 49: 4616-4621.

27. Uzcategui NL, Zhou Y, Figarella K, Ye J, Mukhopadhyay R, Bhattacharjee H. Alteration in glycerol and metalloid permeability by a single mutation in the extracellular C-loop of Leishmania major aquaglyceroporin LmAQP1. Mol Microbiol. 2008; 70: 1477-1486.

28. Mukhopadhyay R, Mandal G, Atluri VS, Figarella K, Uzcategui NL, Zhou Y, et al. The role of alanine 163 in solute permeability of Leishmania major aquaglyceroporin LmAQP1. Mol Biochem Parasitol. 2011; 175: 83-90.

29. Mandal G, Sharma M, Kruse M, Sander-Juelch C, Munro LA, Wang Y, et al. Modulation of Leishmania major aquaglyceroporin activity by a mitogen-activated protein kinase. Mol Microbiol. 2012; 85: 1204- 1218

Mukhopadhyay R (2014) An Aquaglyceroporin as a New Drug Target in Leishmania. Clin Res Infect Dis 1(1): 1001.

Received : 28 Sep 2013
Accepted : 28 Sep 2013
Published : 30 Sep 2013
Journals
Annals of Otolaryngology and Rhinology
ISSN : 2379-948X
Launched : 2014
JSM Schizophrenia
Launched : 2016
Journal of Nausea
Launched : 2020
JSM Internal Medicine
Launched : 2016
JSM Hepatitis
Launched : 2016
JSM Oro Facial Surgeries
ISSN : 2578-3211
Launched : 2016
Journal of Human Nutrition and Food Science
ISSN : 2333-6706
Launched : 2013
JSM Regenerative Medicine and Bioengineering
ISSN : 2379-0490
Launched : 2013
JSM Spine
ISSN : 2578-3181
Launched : 2016
Archives of Palliative Care
ISSN : 2573-1165
Launched : 2016
JSM Nutritional Disorders
ISSN : 2578-3203
Launched : 2017
Annals of Neurodegenerative Disorders
ISSN : 2476-2032
Launched : 2016
Journal of Fever
ISSN : 2641-7782
Launched : 2017
JSM Bone Marrow Research
ISSN : 2578-3351
Launched : 2016
JSM Mathematics and Statistics
ISSN : 2578-3173
Launched : 2014
Journal of Autoimmunity and Research
ISSN : 2573-1173
Launched : 2014
JSM Arthritis
ISSN : 2475-9155
Launched : 2016
JSM Head and Neck Cancer-Cases and Reviews
ISSN : 2573-1610
Launched : 2016
JSM General Surgery Cases and Images
ISSN : 2573-1564
Launched : 2016
JSM Anatomy and Physiology
ISSN : 2573-1262
Launched : 2016
JSM Dental Surgery
ISSN : 2573-1548
Launched : 2016
Annals of Emergency Surgery
ISSN : 2573-1017
Launched : 2016
Annals of Mens Health and Wellness
ISSN : 2641-7707
Launched : 2017
Journal of Preventive Medicine and Health Care
ISSN : 2576-0084
Launched : 2018
Journal of Chronic Diseases and Management
ISSN : 2573-1300
Launched : 2016
Annals of Vaccines and Immunization
ISSN : 2378-9379
Launched : 2014
JSM Heart Surgery Cases and Images
ISSN : 2578-3157
Launched : 2016
Annals of Reproductive Medicine and Treatment
ISSN : 2573-1092
Launched : 2016
JSM Brain Science
ISSN : 2573-1289
Launched : 2016
JSM Biomarkers
ISSN : 2578-3815
Launched : 2014
JSM Biology
ISSN : 2475-9392
Launched : 2016
Archives of Stem Cell and Research
ISSN : 2578-3580
Launched : 2014
Annals of Clinical and Medical Microbiology
ISSN : 2578-3629
Launched : 2014
JSM Pediatric Surgery
ISSN : 2578-3149
Launched : 2017
Journal of Memory Disorder and Rehabilitation
ISSN : 2578-319X
Launched : 2016
JSM Tropical Medicine and Research
ISSN : 2578-3165
Launched : 2016
JSM Head and Face Medicine
ISSN : 2578-3793
Launched : 2016
JSM Cardiothoracic Surgery
ISSN : 2573-1297
Launched : 2016
JSM Bone and Joint Diseases
ISSN : 2578-3351
Launched : 2017
JSM Bioavailability and Bioequivalence
ISSN : 2641-7812
Launched : 2017
JSM Atherosclerosis
ISSN : 2573-1270
Launched : 2016
Journal of Genitourinary Disorders
ISSN : 2641-7790
Launched : 2017
Journal of Fractures and Sprains
ISSN : 2578-3831
Launched : 2016
Journal of Autism and Epilepsy
ISSN : 2641-7774
Launched : 2016
Annals of Marine Biology and Research
ISSN : 2573-105X
Launched : 2014
JSM Health Education & Primary Health Care
ISSN : 2578-3777
Launched : 2016
JSM Communication Disorders
ISSN : 2578-3807
Launched : 2016
Annals of Musculoskeletal Disorders
ISSN : 2578-3599
Launched : 2016
Annals of Virology and Research
ISSN : 2573-1122
Launched : 2014
JSM Renal Medicine
ISSN : 2573-1637
Launched : 2016
Journal of Muscle Health
ISSN : 2578-3823
Launched : 2016
JSM Genetics and Genomics
ISSN : 2334-1823
Launched : 2013
JSM Anxiety and Depression
ISSN : 2475-9139
Launched : 2016
Clinical Journal of Heart Diseases
ISSN : 2641-7766
Launched : 2016
Annals of Medicinal Chemistry and Research
ISSN : 2378-9336
Launched : 2014
JSM Pain and Management
ISSN : 2578-3378
Launched : 2016
JSM Women's Health
ISSN : 2578-3696
Launched : 2016
Clinical Research in HIV or AIDS
ISSN : 2374-0094
Launched : 2013
Journal of Endocrinology, Diabetes and Obesity
ISSN : 2333-6692
Launched : 2013
Journal of Substance Abuse and Alcoholism
ISSN : 2373-9363
Launched : 2013
JSM Neurosurgery and Spine
ISSN : 2373-9479
Launched : 2013
Journal of Liver and Clinical Research
ISSN : 2379-0830
Launched : 2014
Journal of Drug Design and Research
ISSN : 2379-089X
Launched : 2014
JSM Clinical Oncology and Research
ISSN : 2373-938X
Launched : 2013
JSM Bioinformatics, Genomics and Proteomics
ISSN : 2576-1102
Launched : 2014
JSM Chemistry
ISSN : 2334-1831
Launched : 2013
Journal of Trauma and Care
ISSN : 2573-1246
Launched : 2014
JSM Surgical Oncology and Research
ISSN : 2578-3688
Launched : 2016
Annals of Food Processing and Preservation
ISSN : 2573-1033
Launched : 2016
Journal of Radiology and Radiation Therapy
ISSN : 2333-7095
Launched : 2013
JSM Physical Medicine and Rehabilitation
ISSN : 2578-3572
Launched : 2016
Annals of Clinical Pathology
ISSN : 2373-9282
Launched : 2013
Annals of Cardiovascular Diseases
ISSN : 2641-7731
Launched : 2016
Journal of Behavior
ISSN : 2576-0076
Launched : 2016
Annals of Clinical and Experimental Metabolism
ISSN : 2572-2492
Launched : 2016
JSM Microbiology
ISSN : 2333-6455
Launched : 2013
Journal of Urology and Research
ISSN : 2379-951X
Launched : 2014
Journal of Family Medicine and Community Health
ISSN : 2379-0547
Launched : 2013
Annals of Pregnancy and Care
ISSN : 2578-336X
Launched : 2017
JSM Cell and Developmental Biology
ISSN : 2379-061X
Launched : 2013
Annals of Aquaculture and Research
ISSN : 2379-0881
Launched : 2014
Clinical Research in Pulmonology
ISSN : 2333-6625
Launched : 2013
Journal of Immunology and Clinical Research
ISSN : 2333-6714
Launched : 2013
Annals of Forensic Research and Analysis
ISSN : 2378-9476
Launched : 2014
JSM Biochemistry and Molecular Biology
ISSN : 2333-7109
Launched : 2013
Annals of Breast Cancer Research
ISSN : 2641-7685
Launched : 2016
Annals of Gerontology and Geriatric Research
ISSN : 2378-9409
Launched : 2014
Journal of Sleep Medicine and Disorders
ISSN : 2379-0822
Launched : 2014
JSM Burns and Trauma
ISSN : 2475-9406
Launched : 2016
Chemical Engineering and Process Techniques
ISSN : 2333-6633
Launched : 2013
Annals of Clinical Cytology and Pathology
ISSN : 2475-9430
Launched : 2014
JSM Allergy and Asthma
ISSN : 2573-1254
Launched : 2016
Journal of Neurological Disorders and Stroke
ISSN : 2334-2307
Launched : 2013
Annals of Sports Medicine and Research
ISSN : 2379-0571
Launched : 2014
JSM Sexual Medicine
ISSN : 2578-3718
Launched : 2016
Annals of Vascular Medicine and Research
ISSN : 2378-9344
Launched : 2014
JSM Biotechnology and Biomedical Engineering
ISSN : 2333-7117
Launched : 2013
Journal of Hematology and Transfusion
ISSN : 2333-6684
Launched : 2013
JSM Environmental Science and Ecology
ISSN : 2333-7141
Launched : 2013
Journal of Cardiology and Clinical Research
ISSN : 2333-6676
Launched : 2013
JSM Nanotechnology and Nanomedicine
ISSN : 2334-1815
Launched : 2013
Journal of Ear, Nose and Throat Disorders
ISSN : 2475-9473
Launched : 2016
JSM Ophthalmology
ISSN : 2333-6447
Launched : 2013
Journal of Pharmacology and Clinical Toxicology
ISSN : 2333-7079
Launched : 2013
Annals of Psychiatry and Mental Health
ISSN : 2374-0124
Launched : 2013
Medical Journal of Obstetrics and Gynecology
ISSN : 2333-6439
Launched : 2013
Annals of Pediatrics and Child Health
ISSN : 2373-9312
Launched : 2013
JSM Clinical Pharmaceutics
ISSN : 2379-9498
Launched : 2014
JSM Foot and Ankle
ISSN : 2475-9112
Launched : 2016
JSM Alzheimer's Disease and Related Dementia
ISSN : 2378-9565
Launched : 2014
Journal of Addiction Medicine and Therapy
ISSN : 2333-665X
Launched : 2013
Journal of Veterinary Medicine and Research
ISSN : 2378-931X
Launched : 2013
Annals of Public Health and Research
ISSN : 2378-9328
Launched : 2014
Annals of Orthopedics and Rheumatology
ISSN : 2373-9290
Launched : 2013
Journal of Clinical Nephrology and Research
ISSN : 2379-0652
Launched : 2014
Annals of Community Medicine and Practice
ISSN : 2475-9465
Launched : 2014
Annals of Biometrics and Biostatistics
ISSN : 2374-0116
Launched : 2013
JSM Clinical Case Reports
ISSN : 2373-9819
Launched : 2013
Journal of Cancer Biology and Research
ISSN : 2373-9436
Launched : 2013
Journal of Surgery and Transplantation Science
ISSN : 2379-0911
Launched : 2013
Journal of Dermatology and Clinical Research
ISSN : 2373-9371
Launched : 2013
JSM Gastroenterology and Hepatology
ISSN : 2373-9487
Launched : 2013
Annals of Nursing and Practice
ISSN : 2379-9501
Launched : 2014
JSM Dentistry
ISSN : 2333-7133
Launched : 2013
Author Information X