Loading

JSM Biotechnology and Biomedical Engineering

Image-Guided Focused Ultrasound: Endless Possibilities for Non-Invasive Therapy in the 21st Century

Editorial | Open Access

  • 1. Department of Biomedical Engineering, Catholic University of America, USA
+ Show More - Show Less
Corresponding Authors
Victor Frenkel, Department of Biomedical Engineering, Catholic University of America, USA
Citation

Frenkel V (2013) Image-Guided Focused Ultrasound: Endless Possibilities for Non-Invasive Therapy in the 21st Century. JSM Biotechnol Bioeng 1(1): 1001.

Editorial

A man arrives at a university hospital. He suffers from essential tremor (ET), a neurological disorder characterized by involuntary and rhythmic shaking during voluntary movements such as lifting a cup to drink. The MR scanner in which he is placed looks like any other scanner you would find in a hospital or clinic. It has however one major difference. At the end of the patient table is a large helmet-shaped device, inside of which is a sophisticated array of ultrasound transducers. As he lies down on the table, the device is placed over his head, and coupled to this scalp with a flexible water jacket.

This is not science fiction. And it’s also not a prediction of what visionaries are saying is inevitable for medical science. It’s a Monday. June 20th, 2011. And our patient is about to undergo a revolutionary procedure that’s been in development for almost a century.

Back to our device, which admittedly looks like something you’d see in a B-rated science fiction movie. One of its unique features is that the ultrasound beams created by each of the more than 1000 individual transducers are incapable of creating any effects in the tissues on their own. At the point, however, where the beams intersect, the concentration of acoustic energy can raise the temperature of the tissue and destroy it within just seconds. This focal point, just millimeters in diameter, can also be electronically steered and accurately positioned at any location within the brain. In this particular treatment, the target is the thalamus; the region associated with ET.

Still sound like science fiction? Please read on.

But first a little history: More than half a century before, in the early 1940’s, the first study was published demonstrating how a focused ultrasound (FUS) beam can generate a biologically significant effect. Experiments in mid-sized animal models indicated that reversible changes could be created in the brain, identified by well characterized modifications in behavior. The importance of not creating any effects in the intervening tissues was also notable, being an essential prerequisite for future clinical translation. More than a decade later in the mid 1950’s William and Francis Fry from the University of Illinois showed that these exposures could be carried out in humans. The need for image-guidance however now became evident. And it was not until the first image-guided devices were developed that FUS ablation became clinically feasible.

Back in the MR scanner, after a sequence of well practiced safety checks, the ET patient is now ready to be treated. The tests included a short, low energy FUS pulse that generates a temperature elevation of only a few degrees Celsius. This is viewed using a special sequence exclusive to MRI where a temperature ‘map’ is superimposed on a pre-scanned MR image. This shortlived and minimal temperature elevation is inferred from a predictable change in the motion of the protons of the body’s molecules in response to being heated. It is inconsequential from a biological perspective. However, it’s essential to ensure that the beam’s focus is directed at the correct location

The safety and accuracy of these FUS treatments has continued to improve since the first CE approved procedure in Europe in the early 1990’s. This was for the ablation of prostate tumors using a trans-rectal FUS device guided with a coaxial ultrasound imaging transducer. Just over a decade later, the FDA approved the first treatments of uterine fibroids using an MR guided FUS system. Today there are hundreds of centers world-wide with similar systems, where tens of thousands of these procedures have already been safely carried out. The ability to successfully combine state of the art MR imaging with sophisticated FUS devices paved the way to undeniably the most challenging of these noninvasive surgical procedures: ablation of highly localized regions in the brain.

What truly can be characterized as nothing short of amazing is that this noninvasive surgery is being carried out in the ET patient who is awake and fully alert. Further making this procedure appear to be something from the future is that the physician’s only instrument is a computer mouse, which he uses at the modified MR console. He is also 15 feet from the patient and in an adjacent room. After a traditional MR scan is carried out to identify the region in the thalamus to be treated, the safety exposure is performed and the patient is now ready for treatment. A number of final adjustments are made on the graphic user interface, which are then followed by one final click of the mouse. Within seconds the tissue is heated to just above 60 degrees Celsius. The proteins are denatured and the exposed cells destroyed. The MR thermometry sequence validates that indeed the required thermal dose was delivered to the 3 mm diameter region. And then the patient is taken out of the scanner and, after a short post-op monitoring period, he is free to go home.

Another one of the debilitating manifestations of ET affecting quality of life is the inability to write in a legible manner. In order to evaluate the immediate benefits of the FUS treatment, the patient was asked to write a simple sentence before and after he was treated. The stark difference in improvement in his handwriting afterwards was an undeniable testament to the success of the procedure. His wife’s reaction pretty much summed it up, stating simply and to the point that it was ‘miraculous’.

This ground-breaking sequence of events was documented in a video by the popular site, Technology Entertainment Design (TED), logging over 100,000 views in its first five days. Two years later, it stands at over a half a million. This exemplifies the interest and excitement that exists today for this technology, which is no longer considered obscure, and instead is fast becoming mainstream. As a personal testimony, when I first started my graduate studies in this field almost two decades ago, my friends and colleagues saw therapeutic ultrasound (TUS) as no more than a curiosity. Today, of course, the reactions are quite different.

This revolutionary treatment of ET is emblematic of the extraordinary variety of procedures presently being carried out and in development employing image-guided FUS. As astonishing as these results were to the average layman, who saw a man walk in to a clinic with an incurable and life altering neurological disorder, and then walk out completely cured a few hours later, they were not to my colleagues and me. Over the years we have witnessed the deliberate and incremental progress in this field, as we made our own contributions. In 2002 there were just over 250 publications on FUS related studies. Ten years later, in 2012, there were more than 1100.

Using ultrasound for therapeutic purposes dates back more than half a century, even predating its use for diagnostic imaging. TUS can generally be described as the use of ultrasound for applications other than imaging or diagnostics. In diagnostic ultrasound, energy deposition in the tissues is meant to be minimal in order to prevent the occurrence of adverse biological effects. Applications of TUS, on the other hand, are based on depositing ultrasound energy to specifically create effects. These effects can be mild and reversible, such as those employed by physical therapist for the purpose of healing. Or they can be more extreme and irreversible such as FUS employed for the treatment of the ET. Here, focusing the beam can concentrate the energy, allowing heat to be generated faster than it can be removed. As a consequence, the tissue is ablated by the process of coagulative necrosis.

It was just over sixty years ago when TUS exposures were first shown to be beneficial in routine medical practice. In a seminal preclinical study, low energy, non-focused exposures were shown to stimulate the formation of bone callus in a radial fracture model in rabbits. Since then, interest and development in the field of TUS has continued to grow, where presently hundreds of research centers and universities world-wide are working to develop and improve applications in the fields of vascular disease, oncology, cellular therapy and physical therapy. Whereas non-focused, low intensity TUS exposures are being used in the clinic for healing and to enhance local transdermal delivery, FUS is being employed for thermally ablating uterine fibroids and a variety of malignant tumors including those in the prostate, breast, pancreas, and bone.

Some of the most exciting new applications of FUS involve providing these exposures at energy levels that fall somewhere between those for physical therapy and ablation. By employing these FUS exposures in pulsed mode (pFUS) temporal rates of energy deposition are substantially decreased, and cooling can occur between the individual pulses. As a result, temperature elevations can be restricted to just a few degrees Celsius and non-thermal mechanisms of ultrasound interactions with the tissues can predominate. Today, these pFUS exposures are being developed for a variety of drug delivery applications, including enhancing the penetration of thrombolytics in to blood clots, opening the blood-brain-barrier to enable the delivery of agents to the brain, and facilitating the delivery of chemotherapeutic agents in to solid tumors. Additional applications in development for pFUS include blocking nerve conduction to control spasticity, and remote palpation for diagnosis of tumors and liver sclerosis.

One of the exciting new directions getting a lot of attention in the TUS research community is combining pFUS exposures with specialized drug carriers to maximize local deployment of agents in a targeted region. This type of strategy is extremely advantageous in the case of chemotherapeutic agents because of their notoriously toxic nature to healthy, non-cancerous cells. A number of years ago, my colleagues and I first demonstrated how pFUS exposures could be used to deploy an FDA approved chemotherapeutic agent from temperature sensitive liposomes (TSLs). The TSLs were administered systemically in a small animal model with a tumor on its flank. The pFUS exposures, provided only in the tumors, were designed to generate nondestructive temperatures of only a few degrees Celsius; just enough to render the liposomes leaky and release their payload. The success of this study has lead to dozens of similar studies being carried out. And today clinical trials with this procedure are already being planned.

As for the future, it is equally promising. One hot topic is the development of hand-held devices for delivering personalized treatment at the bedside. Similar to the state-off-the-art MR guided FUS systems, these small and compact devices also combine the newest ultrasound transducer technology with sophisticated and high resolution, real-time, image guidance and monitoring capabilities. My colleagues and I recently evaluated one such device that we developed. In a preclinical, arterial bypass graft model of chronic thrombus, we demonstrated how pFUS exposures provided with this device could facilitate improved recanalization of the clotted vessel with an FDA approved thrombolytic. Whereas treating an acute blood clot in the brain, as occurs in the case of an ischemic stroke, would require the more advanced imaging capabilities of an MR guided system, these relatively inexpensive and hand-held devices could be perfectly suitable for recurring treatments in the legs of a bedridden patient suffering from deep vein thrombosis (DVT).

Another exciting investigational direction that is truly pushing the boundaries for potential applications is based on the molecular effects that these FUS exposures can generate. A variety of studies have already reported increased expression levels of genes for which a host of therapeutic applications could be proposed. This includes genes for enhancing revascularization of ischemic tissue, for controlling the expression of exogenously administered therapeutic genes, and even for increasing targeting of stem cells to a designated tissue or organ. Indeed, for all three of these exciting applications, the proof-of-concept studies have already been carried out and published.

So back one last time to check in on our ET patient. Two years later and he’s doing just fine. Playing golf, and in general, enjoying his retirement. Only 10 years ago, however, before the first FDA approval of an MR guided FUS device, his prognosis would not have been so favorable. That we do stand where we are today is of course thanks to a number of factors that are all equally important; the technological advancements that have led to our current state of the art devices; the dedicated scientists and physicians who possessed the vision and pursued the procedures to their present state of development; and not least the selfsacrifice of the brave individuals, like our ET patient, who agreed to volunteer and be test-subjects for these exciting and truly futuristic procedures.

Received : 10 Jul 2013
Accepted : 10 Jul 2013
Published : 12 Jul 2013
Journals
Annals of Otolaryngology and Rhinology
ISSN : 2379-948X
Launched : 2014
JSM Schizophrenia
Launched : 2016
Journal of Nausea
Launched : 2020
JSM Internal Medicine
Launched : 2016
JSM Hepatitis
Launched : 2016
JSM Oro Facial Surgeries
ISSN : 2578-3211
Launched : 2016
Journal of Human Nutrition and Food Science
ISSN : 2333-6706
Launched : 2013
JSM Regenerative Medicine and Bioengineering
ISSN : 2379-0490
Launched : 2013
JSM Spine
ISSN : 2578-3181
Launched : 2016
Archives of Palliative Care
ISSN : 2573-1165
Launched : 2016
JSM Nutritional Disorders
ISSN : 2578-3203
Launched : 2017
Annals of Neurodegenerative Disorders
ISSN : 2476-2032
Launched : 2016
Journal of Fever
ISSN : 2641-7782
Launched : 2017
JSM Bone Marrow Research
ISSN : 2578-3351
Launched : 2016
JSM Mathematics and Statistics
ISSN : 2578-3173
Launched : 2014
Journal of Autoimmunity and Research
ISSN : 2573-1173
Launched : 2014
JSM Arthritis
ISSN : 2475-9155
Launched : 2016
JSM Head and Neck Cancer-Cases and Reviews
ISSN : 2573-1610
Launched : 2016
JSM General Surgery Cases and Images
ISSN : 2573-1564
Launched : 2016
JSM Anatomy and Physiology
ISSN : 2573-1262
Launched : 2016
JSM Dental Surgery
ISSN : 2573-1548
Launched : 2016
Annals of Emergency Surgery
ISSN : 2573-1017
Launched : 2016
Annals of Mens Health and Wellness
ISSN : 2641-7707
Launched : 2017
Journal of Preventive Medicine and Health Care
ISSN : 2576-0084
Launched : 2018
Journal of Chronic Diseases and Management
ISSN : 2573-1300
Launched : 2016
Annals of Vaccines and Immunization
ISSN : 2378-9379
Launched : 2014
JSM Heart Surgery Cases and Images
ISSN : 2578-3157
Launched : 2016
Annals of Reproductive Medicine and Treatment
ISSN : 2573-1092
Launched : 2016
JSM Brain Science
ISSN : 2573-1289
Launched : 2016
JSM Biomarkers
ISSN : 2578-3815
Launched : 2014
JSM Biology
ISSN : 2475-9392
Launched : 2016
Archives of Stem Cell and Research
ISSN : 2578-3580
Launched : 2014
Annals of Clinical and Medical Microbiology
ISSN : 2578-3629
Launched : 2014
JSM Pediatric Surgery
ISSN : 2578-3149
Launched : 2017
Journal of Memory Disorder and Rehabilitation
ISSN : 2578-319X
Launched : 2016
JSM Tropical Medicine and Research
ISSN : 2578-3165
Launched : 2016
JSM Head and Face Medicine
ISSN : 2578-3793
Launched : 2016
JSM Cardiothoracic Surgery
ISSN : 2573-1297
Launched : 2016
JSM Bone and Joint Diseases
ISSN : 2578-3351
Launched : 2017
JSM Bioavailability and Bioequivalence
ISSN : 2641-7812
Launched : 2017
JSM Atherosclerosis
ISSN : 2573-1270
Launched : 2016
Journal of Genitourinary Disorders
ISSN : 2641-7790
Launched : 2017
Journal of Fractures and Sprains
ISSN : 2578-3831
Launched : 2016
Journal of Autism and Epilepsy
ISSN : 2641-7774
Launched : 2016
Annals of Marine Biology and Research
ISSN : 2573-105X
Launched : 2014
JSM Health Education & Primary Health Care
ISSN : 2578-3777
Launched : 2016
JSM Communication Disorders
ISSN : 2578-3807
Launched : 2016
Annals of Musculoskeletal Disorders
ISSN : 2578-3599
Launched : 2016
Annals of Virology and Research
ISSN : 2573-1122
Launched : 2014
JSM Renal Medicine
ISSN : 2573-1637
Launched : 2016
Journal of Muscle Health
ISSN : 2578-3823
Launched : 2016
JSM Genetics and Genomics
ISSN : 2334-1823
Launched : 2013
JSM Anxiety and Depression
ISSN : 2475-9139
Launched : 2016
Clinical Journal of Heart Diseases
ISSN : 2641-7766
Launched : 2016
Annals of Medicinal Chemistry and Research
ISSN : 2378-9336
Launched : 2014
JSM Pain and Management
ISSN : 2578-3378
Launched : 2016
JSM Women's Health
ISSN : 2578-3696
Launched : 2016
Clinical Research in HIV or AIDS
ISSN : 2374-0094
Launched : 2013
Journal of Endocrinology, Diabetes and Obesity
ISSN : 2333-6692
Launched : 2013
Journal of Substance Abuse and Alcoholism
ISSN : 2373-9363
Launched : 2013
JSM Neurosurgery and Spine
ISSN : 2373-9479
Launched : 2013
Journal of Liver and Clinical Research
ISSN : 2379-0830
Launched : 2014
Journal of Drug Design and Research
ISSN : 2379-089X
Launched : 2014
JSM Clinical Oncology and Research
ISSN : 2373-938X
Launched : 2013
JSM Bioinformatics, Genomics and Proteomics
ISSN : 2576-1102
Launched : 2014
JSM Chemistry
ISSN : 2334-1831
Launched : 2013
Journal of Trauma and Care
ISSN : 2573-1246
Launched : 2014
JSM Surgical Oncology and Research
ISSN : 2578-3688
Launched : 2016
Annals of Food Processing and Preservation
ISSN : 2573-1033
Launched : 2016
Journal of Radiology and Radiation Therapy
ISSN : 2333-7095
Launched : 2013
JSM Physical Medicine and Rehabilitation
ISSN : 2578-3572
Launched : 2016
Annals of Clinical Pathology
ISSN : 2373-9282
Launched : 2013
Annals of Cardiovascular Diseases
ISSN : 2641-7731
Launched : 2016
Journal of Behavior
ISSN : 2576-0076
Launched : 2016
Annals of Clinical and Experimental Metabolism
ISSN : 2572-2492
Launched : 2016
Clinical Research in Infectious Diseases
ISSN : 2379-0636
Launched : 2013
JSM Microbiology
ISSN : 2333-6455
Launched : 2013
Journal of Urology and Research
ISSN : 2379-951X
Launched : 2014
Journal of Family Medicine and Community Health
ISSN : 2379-0547
Launched : 2013
Annals of Pregnancy and Care
ISSN : 2578-336X
Launched : 2017
JSM Cell and Developmental Biology
ISSN : 2379-061X
Launched : 2013
Annals of Aquaculture and Research
ISSN : 2379-0881
Launched : 2014
Clinical Research in Pulmonology
ISSN : 2333-6625
Launched : 2013
Journal of Immunology and Clinical Research
ISSN : 2333-6714
Launched : 2013
Annals of Forensic Research and Analysis
ISSN : 2378-9476
Launched : 2014
JSM Biochemistry and Molecular Biology
ISSN : 2333-7109
Launched : 2013
Annals of Breast Cancer Research
ISSN : 2641-7685
Launched : 2016
Annals of Gerontology and Geriatric Research
ISSN : 2378-9409
Launched : 2014
Journal of Sleep Medicine and Disorders
ISSN : 2379-0822
Launched : 2014
JSM Burns and Trauma
ISSN : 2475-9406
Launched : 2016
Chemical Engineering and Process Techniques
ISSN : 2333-6633
Launched : 2013
Annals of Clinical Cytology and Pathology
ISSN : 2475-9430
Launched : 2014
JSM Allergy and Asthma
ISSN : 2573-1254
Launched : 2016
Journal of Neurological Disorders and Stroke
ISSN : 2334-2307
Launched : 2013
Annals of Sports Medicine and Research
ISSN : 2379-0571
Launched : 2014
JSM Sexual Medicine
ISSN : 2578-3718
Launched : 2016
Annals of Vascular Medicine and Research
ISSN : 2378-9344
Launched : 2014
Journal of Hematology and Transfusion
ISSN : 2333-6684
Launched : 2013
JSM Environmental Science and Ecology
ISSN : 2333-7141
Launched : 2013
Journal of Cardiology and Clinical Research
ISSN : 2333-6676
Launched : 2013
JSM Nanotechnology and Nanomedicine
ISSN : 2334-1815
Launched : 2013
Journal of Ear, Nose and Throat Disorders
ISSN : 2475-9473
Launched : 2016
JSM Ophthalmology
ISSN : 2333-6447
Launched : 2013
Journal of Pharmacology and Clinical Toxicology
ISSN : 2333-7079
Launched : 2013
Annals of Psychiatry and Mental Health
ISSN : 2374-0124
Launched : 2013
Medical Journal of Obstetrics and Gynecology
ISSN : 2333-6439
Launched : 2013
Annals of Pediatrics and Child Health
ISSN : 2373-9312
Launched : 2013
JSM Clinical Pharmaceutics
ISSN : 2379-9498
Launched : 2014
JSM Foot and Ankle
ISSN : 2475-9112
Launched : 2016
JSM Alzheimer's Disease and Related Dementia
ISSN : 2378-9565
Launched : 2014
Journal of Addiction Medicine and Therapy
ISSN : 2333-665X
Launched : 2013
Journal of Veterinary Medicine and Research
ISSN : 2378-931X
Launched : 2013
Annals of Public Health and Research
ISSN : 2378-9328
Launched : 2014
Annals of Orthopedics and Rheumatology
ISSN : 2373-9290
Launched : 2013
Journal of Clinical Nephrology and Research
ISSN : 2379-0652
Launched : 2014
Annals of Community Medicine and Practice
ISSN : 2475-9465
Launched : 2014
Annals of Biometrics and Biostatistics
ISSN : 2374-0116
Launched : 2013
JSM Clinical Case Reports
ISSN : 2373-9819
Launched : 2013
Journal of Cancer Biology and Research
ISSN : 2373-9436
Launched : 2013
Journal of Surgery and Transplantation Science
ISSN : 2379-0911
Launched : 2013
Journal of Dermatology and Clinical Research
ISSN : 2373-9371
Launched : 2013
JSM Gastroenterology and Hepatology
ISSN : 2373-9487
Launched : 2013
Annals of Nursing and Practice
ISSN : 2379-9501
Launched : 2014
JSM Dentistry
ISSN : 2333-7133
Launched : 2013
Author Information X