Journal of Clinical Nephrology and Research

Vancomycin Dosing and Pharmacists’ Contribution to Therapeutic Monitoring: Single Centre Retrospective Study

Research Article | Open Access | Volume 8 | Issue 1

  • 1. Department of Pharmacy, Frankston Hospital, Australia
+ Show More - Show Less
Corresponding Authors
Emma McLaren, Department of Pharmacy, Frankston Hospital, 2 Hastings Road, Frankston 3199, Victoria, Australia, Tel: 061397847601

Background: Vancomycin is an antibiotic with a narrow therapeutic index. Due to this and the need to obtain early effective levels without inducing adverse effects is a clinical challenge. Vancomycin dosing and monitoring guidelines are available from professional societies and hospitals, but the adherence to these has a wide rate of success, including with pharmacists’ input.

Objectives: To investigate adherence to vancomycin guidelines, therapeutic drug monitoring (TDM), therapeutic range (TR) attainment and the impact of clinical pharmacists on these parameters.

Method: Single centre, retrospective audit reviewed adults who received vancomycin between 2014-2015. Data was extracted from digital medical records and TDM sheets completed by pharmacists. Adherence to hospital guidelines was analysed for dosing, adjustments for renal function and body weight.

Results: 525 vancomycin courses were reviewed with a mean duration of vancomycin use of 5.1 days with a mean of 2.7 trough levels taken. Pharmacists’ involvement in vancomycin therapy resulted in a mean of 1.13 trough levels in TR per patient versus 0.51 (p<0.001) without pharmacist involvement, as well as a mean of 1.61 appropriately taken levels versus 1.00 (p<0.001). 328 patients had a recorded weight; 160 received a loading dose, 46.9% were under-dosed and 5% were overdosed. Initial maintenance doses were under-dosed in 22.2% patients and overdosed in 13.4% patients. Initial frequency was lower than recommended in 7.6% patients and higher in 21.6% patients.

Conclusion: This study identified that there was low adherence to the hospital’s guidelines for vancomycin dosing and monitoring. Pharmacist involvement improved monitoring and TR attainment.


• Vancomycin; Therapeutic drug monitoring; Pharmacist; Hospital


McLaren E, Banakh I, Wanniarachchi L, Cam SL, Loh G, Meanger D (2021) Vancomycin Dosing and Pharmacists’ Contribution to Therapeutic Monitoring: Single Centre Retrospective Study. J Clin Nephrol Res 8(1): 1104.


Vancomycin is an antibiotic with a narrow therapeutic index and efficacy against methicillin resistant staphylococcal (MRSA) infections [1-3]. Early use of vancomycin was associated with significant toxicity, including nephrotoxicity, requiring therapeutic dose monitoring to reduce the risk of adverse events. However, there is conflicting evidence regarding the use of serum concentration monitoring to prevent and predict toxicity and efficacy respectively.

On the basis of limited studies (both animal and human) a value of area under the curve (AUC), divided by minimum inhibitory concentration (MIC) of more than 400 has been established as the ideal pharmacodynamic parameter [2]. However, the most practical and accurate method of monitoring vancomycin is through serum trough concentrations. The serum trough concentration is a surrogate marker for AUC and should be obtained just prior to the fourth dose at steady state conditions. Though, it must be noted that “achievement” of steady state concentration is variable and available evidence does not support the monitoring of peak vancomycin serum concentrations as they do not correlate with either efficacy or toxicity [2,4]. Monitoring of trough vancomycin serum concentration is required to reduce nephrotoxicity in patients who are receiving therapy to target serum concentrations of 15-20mg/L, patients who are on prolonged courses (>3-5 days), or those who are at risk of toxicity [2]. Still, the exact frequency of monitoring is often a matter of clinical judgement [2]. Therefore, careful individualisation of vancomycin and judicious use of serum concentration monitoring assists in selecting the appropriate dose and minimising toxicity [4]. Previous international studies indicated poor adherence to guideline based vancomycin use as well as a need for improved practice in therapeutic drug monitoring in Australia and New Zealand [5-7]. Similarly, anecdotal evidence from local practice suggested that vancomycin dosing and therapeutic drug monitoring had a large scope for improvement. Hence, a study of vancomycin dosing, therapeutic drug monitoring (TDM) and pharmacists’ impact on these was conducted at our tertiary centre.


A retrospective cohort study was conducted examining vancomycin therapy over a 12 month period, from of March 2014 to April 2015, at a tertiary hospital in Victoria, Australia. The method has been described previously [8], but briefly, all patients prescribed vancomycin were included in the study if they were aged greater than 18 years and received more than one intermittent dose of vancomycin, with the therapy initiation at the study site. Patients were excluded from the study if their vancomycin courses were initiated prior to the study period, if they received a continuous infusion or if they were prescribed non-intravenous route of vancomycin. Data was obtained from the hospital’s electronic health-record (EHR), and pharmacist completed vancomycin TDM sheets. Scanned digitised medical records were reviewed for each eligible course of vancomycin and for further pharmacist involvement.

Data collected included patient demographics, indications for vancomycin therapy, loading and maintenance doses, dosing frequencies, serum creatinine on admission and at the start of vancomycin treatment, as well as peak serum creatinine while on vancomycin. TDM (guideline adherence and total number of trough levels), duration of vancomycin course, pharmacist involvement (dose adjustments, renal, level, frequency, trough level ordered on the EHR, cessation of vancomycin, microbiology cultures, stewardship, renal impairment, adverse effects, concurrently prescribed nephrotoxic agents) were also collected. Data was recorded in a customised and secured Excel spreadsheet.

The primary outcomes of the study were: proportion of patients commenced with guideline based doses of vancomycin using patients’ weight and dosing frequency based on renal function at baseline, proportion of patients treated with vancomycin who had pharmacist involvement, and guideline based vancomycin level monitoring with pharmacist involvement compared to medical management alone. Secondary outcomes were pharmacist TDM contributions: dose and or frequency adjustments, reminders for vancomycin level checks, improvement in number of patients reaching target trough level range, and cessation of therapy if not required based on culture results. Patients who did not have a body weight recorded in the medical records were excluded from dosing and frequency selection analysis. If a patient received more than one course of vancomycin it was considered a separate course if there was greater than 48 hours between doses. A trough level was defined as a serum vancomycin level taken within 1 hour prior to the next due dose for the purpose of this study.


The statistical analysis was performed using SPSS 19 with continuous variable analysis using Student t-test or MannWhitney U tests after distribution assessment with SmirnovKolmogorov test. Bivariate parameters were compared using Chi squared or Fisher’s exact test. All p-values below 0.05 were considered statistically significant.


The study received an ethics exemption from the study site Human Research Ethics Committee. No funding was obtained for the conduct of the study.


Seven hundred and seventy courses of vancomycin were identified during the study period, of which 525 were eligible for analysis. The most common reasons for exclusion from the study were patients receiving less than or equal to one dose of vancomycin and oral vancomycin use. The average patient age was 63.6years (range 18-98), with 58.1% of patient being male. Most common comorbidities for the population were hypertension, diabetes and malignancy. The mean serum creatinine (SeCr), was 119.8µmol/L prior to initiation of vancomycin with 12.2% of patients having history of chronic kidney disease (Table 1).

Table 1: Baseline Characteristics of Patients.

Characteristics Number (525)
220 (41.9%)
305 (58.1%)
Age (years; mean) 63.6 (95%CI 62.0-65.2)(18-98)
Weight (kg; mean) (n=328) 81.9 (95%CI 79.2-84.7) (35-197)
Height (cm; mean) (n=245) 171.4 (95%CI 170.1-172.7) (140-201)
Initial SeCr (µmol/L) 119.8 (34-2162)
Ischaemic Heart Disease
Congestive Cardiac Failure
Atrial Fibrillation
Cerebrovascular Accident
Transient Ischaemic Attack
Peripheral Vascular Disease
Gastro-oesophageal Reflux Disease
Chronic Renal Failure
Chronic Obstructive Pulmonary 
Smoker or ex-smoker


208 (39.6%)
101 (19.2%)
49 (9.3%)
70 (13.3%)
51 (9.7%)
17 (3.2%)
64 (12.2%)
93 (17.7%)
64 (12.2%)
81 (15.4%)
137 (26.1%)
115 (21.9%)
152 (29.0%)
30 (5.7%)
36 (6.9%)
46 (8.8%)

Intensive Care Unit Admission 159 (30.3%)
Initial SeCr at Initiation of VANC 
Loading Dose (Courses)
Loading Dose (mean; mg)
Initial dose (mean; mg)
Initial Frequency (mean; hours)
Peak SeCr on VANC (µmol/L)
Treatment duration (days; mean)


112.6 (26-943)
233 (44.4%)
1577mg (500-2500)
1118mg (345-2000)
15 (12-72)
129 (28-1528)
5.1 (1-54)

The most common indications for vancomycin were sepsis (29%), and skin infections (18.1%) [8].

Vancomycin loading doses were administered to 44.4% of patients with a mean dose of 1577mg (500-2500mg). The average maintenance vancomycin dose for the study population was 1118mg (345-2500mg) with a mean frequency of 15 hours (12-72 hours).The mean duration of vancomycin use was 5.1 days (95% CI 4.7-5.5).

Of the 233 patients who were loaded with vancomycin, 160 (69%), patients had a recorded body weight. Based on the vancomycin hospital guideline for loading doses: 5% of patients were given doses above the recommendations, 46.9% patients were given doses below recommendations and 48.1% patients received guideline based doses. Hospital guideline based maintenance doses were prescribed in 64.4% of patients with a recorded body weight, while 13.4% of patients were given doses above and 22.2% were given doses below guideline recommendations. The initial maintenance frequency was lower than recommended by the guideline in 25 (7.6%), patients and higher in 71 (21.6%), patients (Figure 1).

Vancomycin dosing compared to hospital guideline.

Figure 1 Vancomycin dosing compared to hospital guideline.

Two hundred and forty three (46.3%), patients had TDM sheets completed by a clinical pharmacist. The most common interventions by pharmacists were the addition of a level reminder to the EHR (23%), followed by dose adjustments (18.9%) (Table 2).

Table 2: Pharmacist Involvement in Vancomycin Therapeutic Drug Monitoring.

Pharmacist Involvement Rate (%)
Vancomycin TDM Sheet completion
Dose adjustment
TDM level
TDM Renal function
TDM frequency adjustment
Level reminder
Cessation based on culture
Cessation based on stewardship
Cessation due to AKI
Cessation due to AEs
Reason for not administering treatment 


243 (46.3%)
99 (18.9%)
93 (17.7%)
24 (4.6%)
31 (5.9%)
121 (23.0%)
11 (2.1%)
7 (1.3%)
1 (0.2%)
3 (0.6%)
19 (3.6%)

Over half (53.0%), of all patients had a guideline recommended TDM level during treatment, with 48.2% of these patients having pharmacist involvement. Pharmacist involvement during therapy was associated with increased rate of guideline recommended TDM, 41.0% versus 77.0% (p<0.001).Therapeutic range was attained on average for 0.8 (0-14) trough levels during the course of vancomycin. 55.2% patients had no trough levels that were in the therapeutic range and 21.5% patients only had one trough level in the therapeutic range. Pharmacist involvement significantly increased the number of therapeutic levels achieved per patient (0.51 versus 1.13 [95%CI -0.91 to -0.37] p<0.001). TDM was conducted with a mean of 2.7 (0-26 [95%CI 2.4-3.0]) trough levels taken per course of vancomycin. Ninety three patients had no trough levels taken during their course of treatment, with 96.8% of these patients having no pharmacist involvement in their management. The mean number of guideline based levels taken during a course of vancomycin in the study period was 1.3 (0-14 [95%CI 1.1-1.4]) per patient. The first trough level taken during treatment occurred after a mean of 2.1 (0-8) doses. Most patients who received loading doses had TDM done, but 15.5% had no levels checked during their treatment. The first trough level taken after vancomycin loading was inline with the guideline recommendation in 18.8% of patients, of which 43.2% had pharmacist involvement. Inappropriate TDM, with levels taken outside of guideline recommendations occurred in 29.3% patients during the entire treatment, with 76% of these patients having no pharmacist involvement.

Patients who had a vancomycin TDM sheet completed by a clinical pharmacist had been treated with vancomycin for longer on average (4.2 days vs. 6.1 days, p<0.001). Of the 144 patients with an appropriate level who did not have any pharmacist involvement, 14 patients had a vancomycin treatment duration of 1-2 days, 24 patients had a 3 day treatment course, 37 patients had 4 days treatment and the remaining 69 patients had a treatment course greater than 5 (5-28) days.


The results of this study showed that there is a high prevalence of non-adherence to hospital guidelines for vancomycin dosing with respect to loading dose, maintenance dosing and frequencies, as well as TDM. This poor adherence translated into low levels of therapeutic target attainment, and low monitoring levels. Compared to previously published Australian studies of vancomycin guideline adherence rates of 51%-63%, our results were similar at 64.4% for maintenance dosing [9,10]. However, our site vancomycin loading rates were higher at 44.4% compared to 28.3% [10].

Many patients at the study site had no recorded interventions from clinical pharmacists, but those who did had a higher likelihood of having TDM performed and a greater number of therapeutic levels during their treatment. This type of finding has been observed in other centres where clinical pharmacists’ interventions had been implemented [10,11].

The main limitations of this study are: the single site analysis, collection of only written/recorded communications between pharmacists and the medical/surgical teams in regards to dosing and monitoring of vancomycin. Many short-courses of vancomycin, especially those that occurred over periods of reduced pharmacist staffing would have limited opportunity for pharmacists’ contributions or have non-recorded contributions such as cessation of therapy recommendations based on microbiological culture results. The study also did not examine the clinical outcome of vancomycin dosing on infection cure rates or patient mortality and morbidity, but nephrotoxicity outcomes have been reported elsewhere [7]. While the study site was single, it examined clinical practices at a tertiary service with over 400 beds with intensive care, surgical and general medical and speciality services. During reduced clinical pharmacist staffing periods there was an established TDM service provided by dispensary staff utilising the pharmacist TDM sheets and antibiotic level reporting system from the local pathology service that would have minimised the impact of reduced clinical pharmacist input.


This study has confirmed previous study results and anecdotal suggestion of poor guideline adherence with vancomycin dosing and TDM. While pharmacist involvement has improved both guideline adherence and therapeutic level attainment, significant gaps in practice have been identified and will require systemic improvements to reduce potential patient harm through both supratherapeutic and subtherapeutic vancomycin dosing, and inappropriate prescribing practices.


1. Sinha Ray A, Haikal A, Hammoud KA, Yu AS. Vancomycin and the Risk of AKI: A Systematic Review and Meta-Analysis. Clin J Am Soc Nephrol. 2016; 11: 2132-2140.

2. Rybak MJ, Lomaestro BM, Rotschafer JC, Moellering RC, Craig WA, Billeter M, et al. Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis. 2009; 49: 325-327.

3. Zonozi R, Wu A, Shin JI, Secora A, Coresh J, Inker LA, et al. Elevated vancomycin trough levels in a tertiary health system: frequency, risk factors, and prognosis. Mayo Clin Proc. 2019; 94: 17-26.

4. Peninsula Health Parental Drug Administration Guidelines. Vancomycin. Peninsula Health. 2013.

5. Chastain DB, Wheeler S, Franco-Paredes C, Olubajo B, Hawkins WA. Evaluating guideline adherence regarding empirical vancomycin use in patients with neutropenic fever. Int J Infect Dis. 2018; 69: 88-93.

6. Norris R, Martin J, Thompson E, Ray JE, Fullinfaw RO, Joyce D, et al. Current status of therapeutic drug monitoring in Australia and New Zealand; A need for improved assay evaluation, best practice guidelines, and professional development. Therapeutic Drug Monitoring. 2010; 32: 615-623s.

7. Davis SL, Scheetz MH, Bosso JA, Goff DA, Rybak MJ. Adherence to the 2009 consensus guidelines for vancomycin dosing and monitoring practices: a cross-sectional survey of U.S. hospitals. Pharmacotherapy. 2013; 33: 1256-1263.

8. McLaren E, Banakh I, Cam SL, Loh G, Meanger D, Wanniarachchi L. Acute kidney injury risk with piperacillin-tazobactam and vancomycin combination therapy: single centre retrospective study. J Pharm Pract Res. 2020.

9. Lie K, Mees A, Ford V, McCauley L, Roberts M, Clifford RM. Low adherence to vancomycin guidelines at an Australian paediatric hospital. J Pharm Pract Res. 2011; 41: 278-282.

10. Phillips CJ, Gordon DL. Pharmacist-led implementation of a vancomycin guideline across medical and surgical units: impact on clinical behavior and therapeutic drug monitoring outcomes. Integr Pharm Res Pract. 2015; 4: 145-152.

11. Cardile AP, Tan C, Lustik MB, Stratton AN, Madar CS, Elegino J, et al. Optimization of time to initial vancomycin target trough improves clinical outcomes. Springerplus. 2015; 4: 364

McLaren E, Banakh I, Wanniarachchi L, Cam SL, Loh G, Meanger D (2021) Vancomycin Dosing and Pharmacists’ Contribution to Therapeutic Monitoring: Single Centre Retrospective Study. J Clin Nephrol Res 8(1): 1104.

Received : 24 Jun 2021
Accepted : 30 Jul 2021
Published : 30 Jul 2021
Annals of Otolaryngology and Rhinology
ISSN : 2379-948X
Launched : 2014
JSM Schizophrenia
Launched : 2016
Journal of Nausea
Launched : 2020
JSM Internal Medicine
Launched : 2016
JSM Hepatitis
Launched : 2016
JSM Oro Facial Surgeries
ISSN : 2578-3211
Launched : 2016
Journal of Human Nutrition and Food Science
ISSN : 2333-6706
Launched : 2013
JSM Regenerative Medicine and Bioengineering
ISSN : 2379-0490
Launched : 2013
JSM Spine
ISSN : 2578-3181
Launched : 2016
Archives of Palliative Care
ISSN : 2573-1165
Launched : 2016
JSM Nutritional Disorders
ISSN : 2578-3203
Launched : 2017
Annals of Neurodegenerative Disorders
ISSN : 2476-2032
Launched : 2016
Journal of Fever
ISSN : 2641-7782
Launched : 2017
JSM Bone Marrow Research
ISSN : 2578-3351
Launched : 2016
JSM Mathematics and Statistics
ISSN : 2578-3173
Launched : 2014
Journal of Autoimmunity and Research
ISSN : 2573-1173
Launched : 2014
JSM Arthritis
ISSN : 2475-9155
Launched : 2016
JSM Head and Neck Cancer-Cases and Reviews
ISSN : 2573-1610
Launched : 2016
JSM General Surgery Cases and Images
ISSN : 2573-1564
Launched : 2016
JSM Anatomy and Physiology
ISSN : 2573-1262
Launched : 2016
JSM Dental Surgery
ISSN : 2573-1548
Launched : 2016
Annals of Emergency Surgery
ISSN : 2573-1017
Launched : 2016
Annals of Mens Health and Wellness
ISSN : 2641-7707
Launched : 2017
Journal of Preventive Medicine and Health Care
ISSN : 2576-0084
Launched : 2018
Journal of Chronic Diseases and Management
ISSN : 2573-1300
Launched : 2016
Annals of Vaccines and Immunization
ISSN : 2378-9379
Launched : 2014
JSM Heart Surgery Cases and Images
ISSN : 2578-3157
Launched : 2016
Annals of Reproductive Medicine and Treatment
ISSN : 2573-1092
Launched : 2016
JSM Brain Science
ISSN : 2573-1289
Launched : 2016
JSM Biomarkers
ISSN : 2578-3815
Launched : 2014
JSM Biology
ISSN : 2475-9392
Launched : 2016
Archives of Stem Cell and Research
ISSN : 2578-3580
Launched : 2014
Annals of Clinical and Medical Microbiology
ISSN : 2578-3629
Launched : 2014
JSM Pediatric Surgery
ISSN : 2578-3149
Launched : 2017
Journal of Memory Disorder and Rehabilitation
ISSN : 2578-319X
Launched : 2016
JSM Tropical Medicine and Research
ISSN : 2578-3165
Launched : 2016
JSM Head and Face Medicine
ISSN : 2578-3793
Launched : 2016
JSM Cardiothoracic Surgery
ISSN : 2573-1297
Launched : 2016
JSM Bone and Joint Diseases
ISSN : 2578-3351
Launched : 2017
JSM Bioavailability and Bioequivalence
ISSN : 2641-7812
Launched : 2017
JSM Atherosclerosis
ISSN : 2573-1270
Launched : 2016
Journal of Genitourinary Disorders
ISSN : 2641-7790
Launched : 2017
Journal of Fractures and Sprains
ISSN : 2578-3831
Launched : 2016
Journal of Autism and Epilepsy
ISSN : 2641-7774
Launched : 2016
Annals of Marine Biology and Research
ISSN : 2573-105X
Launched : 2014
JSM Health Education & Primary Health Care
ISSN : 2578-3777
Launched : 2016
JSM Communication Disorders
ISSN : 2578-3807
Launched : 2016
Annals of Musculoskeletal Disorders
ISSN : 2578-3599
Launched : 2016
Annals of Virology and Research
ISSN : 2573-1122
Launched : 2014
JSM Renal Medicine
ISSN : 2573-1637
Launched : 2016
Journal of Muscle Health
ISSN : 2578-3823
Launched : 2016
JSM Genetics and Genomics
ISSN : 2334-1823
Launched : 2013
JSM Anxiety and Depression
ISSN : 2475-9139
Launched : 2016
Clinical Journal of Heart Diseases
ISSN : 2641-7766
Launched : 2016
Annals of Medicinal Chemistry and Research
ISSN : 2378-9336
Launched : 2014
JSM Pain and Management
ISSN : 2578-3378
Launched : 2016
JSM Women's Health
ISSN : 2578-3696
Launched : 2016
Clinical Research in HIV or AIDS
ISSN : 2374-0094
Launched : 2013
Journal of Endocrinology, Diabetes and Obesity
ISSN : 2333-6692
Launched : 2013
Journal of Substance Abuse and Alcoholism
ISSN : 2373-9363
Launched : 2013
JSM Neurosurgery and Spine
ISSN : 2373-9479
Launched : 2013
Journal of Liver and Clinical Research
ISSN : 2379-0830
Launched : 2014
Journal of Drug Design and Research
ISSN : 2379-089X
Launched : 2014
JSM Clinical Oncology and Research
ISSN : 2373-938X
Launched : 2013
JSM Bioinformatics, Genomics and Proteomics
ISSN : 2576-1102
Launched : 2014
JSM Chemistry
ISSN : 2334-1831
Launched : 2013
Journal of Trauma and Care
ISSN : 2573-1246
Launched : 2014
JSM Surgical Oncology and Research
ISSN : 2578-3688
Launched : 2016
Annals of Food Processing and Preservation
ISSN : 2573-1033
Launched : 2016
Journal of Radiology and Radiation Therapy
ISSN : 2333-7095
Launched : 2013
JSM Physical Medicine and Rehabilitation
ISSN : 2578-3572
Launched : 2016
Annals of Clinical Pathology
ISSN : 2373-9282
Launched : 2013
Annals of Cardiovascular Diseases
ISSN : 2641-7731
Launched : 2016
Journal of Behavior
ISSN : 2576-0076
Launched : 2016
Annals of Clinical and Experimental Metabolism
ISSN : 2572-2492
Launched : 2016
Clinical Research in Infectious Diseases
ISSN : 2379-0636
Launched : 2013
JSM Microbiology
ISSN : 2333-6455
Launched : 2013
Journal of Urology and Research
ISSN : 2379-951X
Launched : 2014
Journal of Family Medicine and Community Health
ISSN : 2379-0547
Launched : 2013
Annals of Pregnancy and Care
ISSN : 2578-336X
Launched : 2017
JSM Cell and Developmental Biology
ISSN : 2379-061X
Launched : 2013
Annals of Aquaculture and Research
ISSN : 2379-0881
Launched : 2014
Clinical Research in Pulmonology
ISSN : 2333-6625
Launched : 2013
Journal of Immunology and Clinical Research
ISSN : 2333-6714
Launched : 2013
Annals of Forensic Research and Analysis
ISSN : 2378-9476
Launched : 2014
JSM Biochemistry and Molecular Biology
ISSN : 2333-7109
Launched : 2013
Annals of Breast Cancer Research
ISSN : 2641-7685
Launched : 2016
Annals of Gerontology and Geriatric Research
ISSN : 2378-9409
Launched : 2014
Journal of Sleep Medicine and Disorders
ISSN : 2379-0822
Launched : 2014
JSM Burns and Trauma
ISSN : 2475-9406
Launched : 2016
Chemical Engineering and Process Techniques
ISSN : 2333-6633
Launched : 2013
Annals of Clinical Cytology and Pathology
ISSN : 2475-9430
Launched : 2014
JSM Allergy and Asthma
ISSN : 2573-1254
Launched : 2016
Journal of Neurological Disorders and Stroke
ISSN : 2334-2307
Launched : 2013
Annals of Sports Medicine and Research
ISSN : 2379-0571
Launched : 2014
JSM Sexual Medicine
ISSN : 2578-3718
Launched : 2016
Annals of Vascular Medicine and Research
ISSN : 2378-9344
Launched : 2014
JSM Biotechnology and Biomedical Engineering
ISSN : 2333-7117
Launched : 2013
Journal of Hematology and Transfusion
ISSN : 2333-6684
Launched : 2013
JSM Environmental Science and Ecology
ISSN : 2333-7141
Launched : 2013
Journal of Cardiology and Clinical Research
ISSN : 2333-6676
Launched : 2013
JSM Nanotechnology and Nanomedicine
ISSN : 2334-1815
Launched : 2013
Journal of Ear, Nose and Throat Disorders
ISSN : 2475-9473
Launched : 2016
JSM Ophthalmology
ISSN : 2333-6447
Launched : 2013
Journal of Pharmacology and Clinical Toxicology
ISSN : 2333-7079
Launched : 2013
Annals of Psychiatry and Mental Health
ISSN : 2374-0124
Launched : 2013
Medical Journal of Obstetrics and Gynecology
ISSN : 2333-6439
Launched : 2013
Annals of Pediatrics and Child Health
ISSN : 2373-9312
Launched : 2013
JSM Clinical Pharmaceutics
ISSN : 2379-9498
Launched : 2014
JSM Foot and Ankle
ISSN : 2475-9112
Launched : 2016
JSM Alzheimer's Disease and Related Dementia
ISSN : 2378-9565
Launched : 2014
Journal of Addiction Medicine and Therapy
ISSN : 2333-665X
Launched : 2013
Journal of Veterinary Medicine and Research
ISSN : 2378-931X
Launched : 2013
Annals of Public Health and Research
ISSN : 2378-9328
Launched : 2014
Annals of Orthopedics and Rheumatology
ISSN : 2373-9290
Launched : 2013
Annals of Community Medicine and Practice
ISSN : 2475-9465
Launched : 2014
Annals of Biometrics and Biostatistics
ISSN : 2374-0116
Launched : 2013
JSM Clinical Case Reports
ISSN : 2373-9819
Launched : 2013
Journal of Cancer Biology and Research
ISSN : 2373-9436
Launched : 2013
Journal of Surgery and Transplantation Science
ISSN : 2379-0911
Launched : 2013
Journal of Dermatology and Clinical Research
ISSN : 2373-9371
Launched : 2013
JSM Gastroenterology and Hepatology
ISSN : 2373-9487
Launched : 2013
Annals of Nursing and Practice
ISSN : 2379-9501
Launched : 2014
JSM Dentistry
ISSN : 2333-7133
Launched : 2013
Author Information X