Journal of Hematology and Transfusion

Bronchiolitis Obliterans Following Allogeneic Hematopoietic Stem Cell Transplantation

Case Report | Open Access

  • 1. Department of Hematology, Fujian Institute of Hematology, Union Hospital of Fujian Medical University, China
  • 2. Department of Radiology, Union Hospital of Fujian Medical University, China
+ Show More - Show Less
Corresponding Authors
Ting Yang, Department of Hematology, Union Hospital of Fujian Medical University, Fuzhou 350001, China

Bronchiolitis obliterans (BO), characterized by progressive and irreversible respiratory failure, is one of rare complications associated with graft-versus-hostdisease (GvHD) following allogeneic hematopoietic stem cell (HSC) transplantation. We reported here a 15-year-old male patient who was first diagnosed with acute lymphoblastic leukemia and subsequently underwent matched related HSC transplantation. Five months post-transplant, he developed persistent cough, hypoxemia and worsening dyspenia complicated by grade I GVHD with skin stage II. His multidetector—row computed tomography scan was highly suggestive of OB. Considerable clinical improvement were once achieved with the augmented immunosuppressive agents including corticosteroids and methotrexate, however, he eventually died of heart failure followed by chronic pulmonary heart disease 9 months post-transplant. The possible risk factors and the management of OB in this case are discussed.


 Yang T, Lu ZH, Chen XJ, Luo XF, Wang JS, et al. (2013) Bronchiolitis Obliterans Following Allogeneic Hematopoietic Stem Cell Transplantation. J Hematol Transfus 1(2): 1006.


Bronchiolitis obliterans (BO), an inflammatory / fibroproliferative process that results in airway obstruction, was first described in 1901 in patients with progressive dyspnea and nowadays referred to as a late complication in allograft recipients undergoing lung, heart-lung, and bone marrow transplantation (BMT). It is still under recognized and carries high morbidity and mortality [1-3]. Herein we reported a case of a 15-year-old boy who developed BO following matched related hematopoietic stem cell (HSC) transplantation. He died of heart failure resulted from chronic pulmonary heart disease despite the clinical improvement of bronchiolitis and airway obstruction following the use of systemic corticosteroids and methotrexate.


A 15-year-old boy was admitted on January 2006 with complaints of pallor and fever. A diagnosis of philadelphia chromosome (Ph) / bcr-abl negative B-cell precursor acute lymphoblastic leukemia was made after hematologic investigation. Remission induction consisted of Vincristine (2 mg) IV days 1, 8, 15, 22. Daunorubicin 60 mg IV push days 1, 8, 15. Methylprednisolone 60 mg/day PO divided TID days 1 – 28. Complete remission was attained in March 2006. He received three more courses of chemotherapy consisting of cyclophosphamide/ vincristine/daunomycin/prednisone/methotrexate in May 2006, cyclophosphamide/vincristine/ aclacinomycin /prednisone/ cytarabin in June 2006 and /vincristine/prednisone/cytarabin/ L-asparaginase for consolidation in July 2006. The total cumulative dose of antracyclines was 300 mg/m2. In addition, he experienced intrathecal injection of methotrexate (MTX, 10mg), cytarabin (Ara-c, 25mg) plus dexamethasone (DXM, 5mg) as a CNS prophylactic regimen during each interval between chemotherapy cycles. Subsequently he underwent matched, related HSC transplantation. The donor was an HLAmatched sister. Conditioning regimen consisted of busulfan (1 mg/kg, day –5 to –3) and cyclophosphamide (2 g/m2 , day –2 to –1). Cyclosporin A (an initial dose of 3 mg/kg/day given as a continuous infusion and then adjusted to maintain serum levels between 150 to 250 ng/ml) and short course of methotrexate were administered as immunosuppressive therapy for graft-versus host disease (GVHD) prophylaxis. His course was complicated by acute respiratory tract infection, mumps, grade I GVHD with skin involvement (according to NIH consensus criteria, see Figure 1), for which he was treated with Cefoperaxone Sodium / Sulbactam Sodium, intravenous immunoglobulin (IVIg), and Cyclosporin A. Four months after HSC transplantation, he developed skin GVHD II with manifestation of dryness, itching rash, peeling or shedding, and also blood in the urine. He was then hospitalized for 5 days and was therefore treated with Cyclosporin A, Basiliximab (an anti-CD25 antibody) and Mesnaum. During and after this illness, persistent and productive cough without fever and haemoptysis was noted, which was evaluated five months post-transplant. Chest radiograph was unremarkable, and a multidetector— row computed tomography (MDCT) scan of the chest showed no bronchiectasis or air trapping. He was then given a 2-week trial of antibiotic and bronchodilators, with no improvement in his symptoms. Seven months after transplantation, an increase in cough with hypoxemia, dyspenia and worsening fatigue was noted and bilateral medium moist rales were detected on physical examination. Special stains and cultures for bacterial and fungal resulted from sputum were negative, unfortunately, neither a bronchoalveolar lavage nor a transbroncial biopsy was performed without the family’s consent, and moreover the Pulmonary Function Test (PFT) was not available at that moment. MDCT scan showed bronchial dilatation, bronchitis shadows, hyperlucency and mediastinal emphysema, indicating airflow obstruction (Figure 2a). He was then started empirically on Methylprednisolone (intravenously, 80 mg, twice daily, then 60mg, twice daily, then tapered to 40mg twice daily.) and methotrexate (intravenously, 10 mg, once weekly). With this therapy, he improved clinically, with an increase in his performance status (ECOG) and resolution of his cough, rales on examination, and a repeated MDCT scan showed obvious improvement in the bilateral infiltrates and airflow obstruction (Figure 2b). Unfortunately 9 months post-transplant, he died of refractory heart failure, which might due to chronic obstructive pulmonary heart disease. A conventional autopsy could not be performed without the explicit consent of the parents.


Bronchiolitis obliterans (BO) is a late-onset noninfectious pulmonary complication following allogeneic HSC transplantation, and characterized by progressive obstruction of the small airway leading to hyperinflation with areas of atelectasis, impaired mobilization of secretions, development of bronchiectasis, and the fibrosing process. 

According to its rarity [4,5] and so far missing prospective, randomized and controlled trials, case reports about successful treatment of BO might be still of interest for us. Generally, the clinical manifestations of BO are the persistence of respiratory symptoms (cough and wheeze) and signs (tachypnea, crackles, and wheezes on auscultation) beyond the expected time frame after pulmonary injury, and the severity various from asymptomatic to fulminant and fatal [6,7].

A definitive diagnosis of BO required histological examination of lung biopsy. However, diagnostic yield of lung biopsy remains suboptimal [8,9], although the safety and efficacy of lung biopsy for pulmonary infiltrates in patients with hematologic malignancy have been stated recently [10]. Its clinical correlate, bronchiolitis obliterans syndrome (BOS), defined as a fall in FEV1 of greater than 20% from baseline determined by the average of two measurements made at least 3 weeks apart [11]. Implementation of increasingly sensitive criteria for identifying early decline in pulmonary function may allow the prediction of BOS. As such, a potential-BOS stage (BOS 0-p), defined by a 10 to 19% decrease in FEV1 and/or by a 25% or greater decrease in forced expiratory flow, midexpiratory phase (FEF25–75%), from baseline was added to the original staging system in 2001[12].

Nevertheless, a rapid presumptive clinical diagnosis that allows identification of patients is needed. The inclusive criteria has been suggested to be as follows: The patients must develop breathlessness and bronchodilator nonresponsive airflow limitation with moderate to severe chronic graft versus host disease 100 days post-transplantation and thickened or dilated small airways with mosaic attenuation are determined by the radiological examination, such as a clear chest radiograph or a high-resolution computed tomography (HRCT) scan [9]. In the case presented here, a 15-year-old male patient developed persistent cough, hypoxemia and worsening dyspenia complicated by grade I GVHD with skin involvement five months post-transplant, and his MDCT scan showed bilateral bronchiolitis and airflow obstruction. According to the clinical inclusive criteria for BO as stated previously, the timing and nature of his clinical symptoms combined with MDCT changes were characteristic for BO.

Many potential risk factors associated with the development of post-transplant BO have been identified [3-5,8,11,13,14], among which are some highlighted in this case, including male recipient with female donor, a busulfan-based conditioning regimen, methotrexate (MTX) regimen for GvHD prophylaxis, peripheral blood stem-cell transplantation, and also the most common identified risk factor – GvHD. Although the pathophysiology of post-transplant BO is not yet well understood, its strong association with these risk factors is highly suggestive of an alloimmune response triggered by donor T-lymphocytes, which is characterised histopathologically by a predominantly lymphocytic bronchiolar and peribronchiolar inflammatory infiltrate [4,9,15]. Further studies revealed that the inflammatory response of BO is provoked and perpetuated by vast arrays of cytokine and chemokine networks, which consists of TNF-α, interleukin-2 (IL-2), interferon λ, interleukin-8 (IL-8), RANTES (regulated on activation, normal T-cell expressed and secreted), platelet-derived growth factor (PDGF), transforming growth factor, and fibroblast growth factor [16-19]. Thereafter, the repeated or persistent process of inflammation results in an augmented fibroblastic response leading to peribronchiolar fibrosis and obliteration of the airways. In this context, BO is defined as a manifestation of allograft rejection [20].

In the light of the alloimmune nature of BO, combined immunosuppressive treatment may provide an opportunity for reducing pulmonary complications and improving survival [21,22]. However, therapeutic interventions in patients are somehow disappointing. The patient presented here died from heart failure resulted from chronic pulmonary heart disease despite the clinical improvement of both brochiolitis and airway obstruction following the use of systemic corticosteroids and methotrexate. Thus, further investigations on new therapeutic options are required. Since TNF-α seems to play a central role in the inflammatory reaction and enhanced fibroblast proliferation, the commercial anti-TNF-α antibodies (infliximab, etanercept, and adalimumab) have been studied on the treatment of BO. Significantly reduced inflammation, fibrosis, and luminal obstruction with TNF-α blockage have been shown with the animal models of BO and of GVHD with acute lung injury [17,23-25], and moreover, a successful treatment with the use of infliximab has been achieved in a bone marrow transplant patient after failed corticosteroid therapy [6]. Other clinical trials on both lung transplantation and allogeneic HSC transplantation provided the evidence that azithromycin may be promising in the treatment of BO post-transplant [26-28], which led to the new insights with the identification of at least two different phenotypes of BOS: azithromycin-responsive phenotype (the so-called neutrophilic reversible allograft/airways dysfunction (NRAD), and azithromycin-unresponsive phenotype (the fibroproliferative form of BOS or classical obliterative bronchiolitis) [29]. The therapeutic value of azithromycin may due to the inhibition of interleukin-8 release by human alveolar macrophages or by an increase in the apoptosis of neutrophils [30]. There are also evidences that extracorporeal photopheresis can be an effective method of treatment of any inflammatory disorder that is T-cell dependent, including BOS [31,32].

In particular, given the pathophysiological process of BO from lymphocytic bronchiolitis to subepithelial fibrosis, the timing of therapy is likely to be critical for the clinical response. It is reported that azithromycin treatment initiated before the development of BOS stage 2 significantly reduced the risk of death [33]. Moreover, azithromycin prophylaxis might attenuate local and systemic inflammation, which resulted in the prevention of BOS [34]. Thus, BO should be considered when patients post transplant present early respiratory symptoms, which might trigger a good clinical response.


1. Christie JD, Edwards LB, Kucheryavaya AY, Aurora P, Dobbels F, et al. The Registry of the International Society for Heart and Lung Transplantation: twenty-seventh official adult lung and heart-lung transplant report--2010. J Heart Lung Transplant. 2010; 29: 1104-18.

2. Afessa B, Litzow MR, Tefferi A. Bronchiolitis obliterans and other late onset non-infectious pulmonary complications in hematopoietic stem cell transplantation. Bone Marrow Transplant. 2001; 28: 425-434.

3. Dudek AZ, Mahaseth H, DeFor TE, Weisdorf DJ. Bronchiolitis obliterans in chronic graft-versus-host disease: analysis of risk factors and treatment outcomes. Biol Blood Marrow Transplant. 2003; 9: 657- 666.

4. Santo Tomas LH, Loberiza FR Jr, Klein JP, Layde PM, Lipchik RJ, Rizzo JD, et al. Risk factors for bronchiolitis obliterans in allogeneic hematopoietic stem-cell transplantation for leukemia. Chest. 2005; 128: 153-161.

5. Chien JW, Martin PJ, Gooley TA, Flowers ME, Heckbert SR, Nichols WG, et al. Airflow obstruction after myeloablative allogeneic hematopoietic stem cell transplantation. Am J Respir Crit Care Med. 2003; 168: 208- 214.

6. Fullmer JJ, Fan LL, Dishop MK, Rodgers C, Krance R. Successful treatment of bronchiolitis obliterans in a bone marrow transplant patient with tumor necrosis factor-alpha blockade. Pediatrics. 2005; 116: 767-770.

7. Lama VN, Murray S, Lonigro RJ, Toews GB, Chang A, Lau C, et al. Course of FEV(1) after onset of bronchiolitis obliterans syndrome in lung transplant recipients. Am J Respir Crit Care Med. 2007; 175: 1192- 1198.

8. Marras TK, Chan CK. Obliterative bronchiolitis complicating bone marrow transplantation. Semin Respir Crit Care Med. 2003; 24: 531- 542.

9. ryant DH. Obliterative bronchiolitis in haematopoietic stem cell transplantation: can it be treated? Eur Respir J. 2005; 25: 402-404.

10. White DA, Wong PW, Downey R. The utility of open lung biopsy in patients with hematologic malignancies. Am J Respir Crit Care Med. 2000; 161: 723-729.

11. Estenne M, Maurer JR, Boehler A, Egan JJ, Frost A, Hertz M, et al. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J Heart Lung Transplant. 2002; 21: 297-310.

12. Lama VN, Murray S, Mumford JA, Flaherty KR, Chang A, Toews GB, et al. Prognostic value of bronchiolitis obliterans syndrome stage 0-p in single-lung transplant recipients. Am J Respir Crit Care Med. 2005; 172: 379-383.

13. Beinert T, Düll T, Wolf K, Holler E, Vogelmeier C, Behr J, et al. Late pulmonary impairment following allogeneic bone marrow transplantation. Eur J Med Res. 1996; 1: 343-348.

14. Santo Tomas LH, Loberiza FR Jr, Klein JP, Layde PM, Lipchik RJ, Rizzo JD, et al. Risk factors for bronchiolitis obliterans in allogeneic hematopoietic stem-cell transplantation for leukemia. Chest. 2005; 128: 153-161.

15. Eapen M, Horowitz MM, Klein JP, Champlin RE, Loberiza FR Jr, et al. Higher mortality after allogeneic peripheral-blood transplantation compared with bone marrow in children and adolescents: the Histocompatibility and Alternate Stem Cell Source Working Committee of the International Bone Marrow Transplant Registry. J Clin Oncol. 2004; 22: 4872-80.

16. Cooke KR, Krenger W, Hill G, Martin TR, Kobzik L, Brewer J, et al. Host reactive donor T cells are associated with lung injury after experimental allogeneic bone marrow transplantation. Blood. 1998; 92: 2571-2580.

17. Aris RM, Walsh S, Chalermskulrat W, Hathwar V, Neuringer IP. Growth factor upregulation during obliterative bronchiolitis in the mouse model. Am J Respir Crit Care Med. 2002; 166: 417-422.

18. Hertz MI, Henke CA, Nakhleh RE, Harmon KR, Marinelli WA, Fox JM, et al. Obliterative bronchiolitis after lung transplantation: a fibroproliferative disorder associated with platelet-derived growth factor. Proc Natl Acad Sci U S A. 1992; 89: 10385-10389.

19. Magnan A, Mege JL, Escallier JC, Brisse J, Capo C, Reynaud M, et al. Balance between alveolar macrophage IL-6 and TGF-beta in lung transplant recipients. Marseille and Montréal Lung Transplantation Group. Am J Respir Crit Care Med. 1996; 153: 1431-1436.

20. Medoff BD, Seung E, Wain JC, Means TK, Campanella GS, Islam SA, et al. BLT1-mediated T cell trafficking is critical for rejection and obliterative bronchiolitis after lung transplantation. J Exp Med. 2005; 202: 97-110.

21. Stewart S, Fishbein MC, Snell GI, Berry GJ, Boehler A, Burke MM, et al. Revision of the 1996 working formulation for the standardization of nomenclature in the diagnosis of lung rejection. J Heart Lung Transplant. 2007; 26: 1229-1242.

22. Bergeron A, Belle A, Chevret S, Ribaud P, Devergie A, Esperou H, et al. Combined inhaled steroids and bronchodilatators in obstructive airway disease after allogeneic stem cell transplantation. Bone Marrow Transplant. 2007; 39: 547-553.

23. Bashoura L, Gupta S, Jain A, Couriel DR, Komanduri KV, Eapen GA, et al. Inhaled corticosteroids stabilize constrictive bronchiolitis after hematopoietic stem cell transplantation. Bone Marrow Transplant. 2008; 41: 63-67.

24. Cooke KR, Hill GR, Gerbitz A, Kobzik L, Martin TR, Crawford JM, et al. Tumor necrosis factor-alpha neutralization reduces lung injury after experimental allogeneic bone marrow transplantation. Transplantation. 2000; 70: 272-279.

25. Alho HS, Maasilta PK, Harjula AL, Hämmäinen P, Salminen J, Salminen US. Tumor necrosis factor-alpha in a porcine bronchial model of obliterative bronchiolitis. Transplantation. 2003; 76: 516-523.

26. Verleden GM, Dupont LJ. Azithromycin therapy for patients with bronchiolitis obliterans syndrome after lung transplantation. Transplantation. 2004; 77: 1465-1467.

27. Khalid M, Al Saghir A, Saleemi S, Al Dammas S, Zeitouni M, Al Mobeireek A, et al. Azithromycin in bronchiolitis obliterans complicating bone marrow transplantation: a preliminary study. Eur Respir J. 2005; 25: 490-493.

28. Gottlieb J, Szangolies J, Koehnlein T, Golpon H, Simon A, Welte T. Long term azithromycin for bronchiolitis obliterans syndrome after lung transplantation. Transplantation. 2008; 85: 36-41.

29. Verleden GM, Vos R, De Vleeschauwer SI, Willems-Widyastuti A, Verleden SE, Dupont LJ, et al. Obliterative bronchiolitis following lung transplantation: from old to new concepts? Transpl Int. 2009; 22: 771- 779.

30. Verleden GM, Vanaudenaerde BM, Dupont LJ, Van Raemdonck DE. Azithromycin reduces airway neutrophilia and interleukin-8 in patients with bronchiolitis obliterans syndrome. Am J Respir Crit Care Med. 2006; 174: 566-570.

31. Benden C, Speich R, Hofbauer GF, Irani S, Eich-Wanger C, Russi EW, et al. Extracorporeal photopheresis after lung transplantation: a 10-year single-center experience. Transplantation. 2008; 86: 1625-1627.

32. Morrell MR, Despotis GJ, Lublin DM, Patterson GA, Trulock EP, Hachem RR. The efficacy of photopheresis for bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant. 2010; 29: 424-431.

33. Jain R, Hachem RR, Morrell MR, Trulock EP, Chakinala MM, Yusen RD, et al. Azithromycin is associated with increased survival in lung transplant recipients with bronchiolitis obliterans syndrome. J Heart Lung Transplant. 2010; 29: 531-537.

34. Vos R, Vanaudenaerde BM, Verleden SE, De Vleeschauwer SI, Willems Widyastuti A, Van Raemdonck DE, et al. A randomised controlled trial of azithromycin to prevent chronic rejection after lung transplantation. Eur Respir J. 2011; 37: 164-172.

Received : 20 Aug 2013
Accepted : 06 Sep 2013
Published : 06 Sep 2013
Annals of Otolaryngology and Rhinology
ISSN : 2379-948X
Launched : 2014
JSM Schizophrenia
Launched : 2016
Journal of Nausea
Launched : 2020
JSM Internal Medicine
Launched : 2016
JSM Hepatitis
Launched : 2016
JSM Oro Facial Surgeries
ISSN : 2578-3211
Launched : 2016
Journal of Human Nutrition and Food Science
ISSN : 2333-6706
Launched : 2013
JSM Regenerative Medicine and Bioengineering
ISSN : 2379-0490
Launched : 2013
JSM Spine
ISSN : 2578-3181
Launched : 2016
Archives of Palliative Care
ISSN : 2573-1165
Launched : 2016
JSM Nutritional Disorders
ISSN : 2578-3203
Launched : 2017
Annals of Neurodegenerative Disorders
ISSN : 2476-2032
Launched : 2016
Journal of Fever
ISSN : 2641-7782
Launched : 2017
JSM Bone Marrow Research
ISSN : 2578-3351
Launched : 2016
JSM Mathematics and Statistics
ISSN : 2578-3173
Launched : 2014
Journal of Autoimmunity and Research
ISSN : 2573-1173
Launched : 2014
JSM Arthritis
ISSN : 2475-9155
Launched : 2016
JSM Head and Neck Cancer-Cases and Reviews
ISSN : 2573-1610
Launched : 2016
JSM General Surgery Cases and Images
ISSN : 2573-1564
Launched : 2016
JSM Anatomy and Physiology
ISSN : 2573-1262
Launched : 2016
JSM Dental Surgery
ISSN : 2573-1548
Launched : 2016
Annals of Emergency Surgery
ISSN : 2573-1017
Launched : 2016
Annals of Mens Health and Wellness
ISSN : 2641-7707
Launched : 2017
Journal of Preventive Medicine and Health Care
ISSN : 2576-0084
Launched : 2018
Journal of Chronic Diseases and Management
ISSN : 2573-1300
Launched : 2016
Annals of Vaccines and Immunization
ISSN : 2378-9379
Launched : 2014
JSM Heart Surgery Cases and Images
ISSN : 2578-3157
Launched : 2016
Annals of Reproductive Medicine and Treatment
ISSN : 2573-1092
Launched : 2016
JSM Brain Science
ISSN : 2573-1289
Launched : 2016
JSM Biomarkers
ISSN : 2578-3815
Launched : 2014
JSM Biology
ISSN : 2475-9392
Launched : 2016
Archives of Stem Cell and Research
ISSN : 2578-3580
Launched : 2014
Annals of Clinical and Medical Microbiology
ISSN : 2578-3629
Launched : 2014
JSM Pediatric Surgery
ISSN : 2578-3149
Launched : 2017
Journal of Memory Disorder and Rehabilitation
ISSN : 2578-319X
Launched : 2016
JSM Tropical Medicine and Research
ISSN : 2578-3165
Launched : 2016
JSM Head and Face Medicine
ISSN : 2578-3793
Launched : 2016
JSM Cardiothoracic Surgery
ISSN : 2573-1297
Launched : 2016
JSM Bone and Joint Diseases
ISSN : 2578-3351
Launched : 2017
JSM Bioavailability and Bioequivalence
ISSN : 2641-7812
Launched : 2017
JSM Atherosclerosis
ISSN : 2573-1270
Launched : 2016
Journal of Genitourinary Disorders
ISSN : 2641-7790
Launched : 2017
Journal of Fractures and Sprains
ISSN : 2578-3831
Launched : 2016
Journal of Autism and Epilepsy
ISSN : 2641-7774
Launched : 2016
Annals of Marine Biology and Research
ISSN : 2573-105X
Launched : 2014
JSM Health Education & Primary Health Care
ISSN : 2578-3777
Launched : 2016
JSM Communication Disorders
ISSN : 2578-3807
Launched : 2016
Annals of Musculoskeletal Disorders
ISSN : 2578-3599
Launched : 2016
Annals of Virology and Research
ISSN : 2573-1122
Launched : 2014
JSM Renal Medicine
ISSN : 2573-1637
Launched : 2016
Journal of Muscle Health
ISSN : 2578-3823
Launched : 2016
JSM Genetics and Genomics
ISSN : 2334-1823
Launched : 2013
JSM Anxiety and Depression
ISSN : 2475-9139
Launched : 2016
Clinical Journal of Heart Diseases
ISSN : 2641-7766
Launched : 2016
Annals of Medicinal Chemistry and Research
ISSN : 2378-9336
Launched : 2014
JSM Pain and Management
ISSN : 2578-3378
Launched : 2016
JSM Women's Health
ISSN : 2578-3696
Launched : 2016
Clinical Research in HIV or AIDS
ISSN : 2374-0094
Launched : 2013
Journal of Endocrinology, Diabetes and Obesity
ISSN : 2333-6692
Launched : 2013
Journal of Substance Abuse and Alcoholism
ISSN : 2373-9363
Launched : 2013
JSM Neurosurgery and Spine
ISSN : 2373-9479
Launched : 2013
Journal of Liver and Clinical Research
ISSN : 2379-0830
Launched : 2014
Journal of Drug Design and Research
ISSN : 2379-089X
Launched : 2014
JSM Clinical Oncology and Research
ISSN : 2373-938X
Launched : 2013
JSM Bioinformatics, Genomics and Proteomics
ISSN : 2576-1102
Launched : 2014
JSM Chemistry
ISSN : 2334-1831
Launched : 2013
Journal of Trauma and Care
ISSN : 2573-1246
Launched : 2014
JSM Surgical Oncology and Research
ISSN : 2578-3688
Launched : 2016
Annals of Food Processing and Preservation
ISSN : 2573-1033
Launched : 2016
Journal of Radiology and Radiation Therapy
ISSN : 2333-7095
Launched : 2013
JSM Physical Medicine and Rehabilitation
ISSN : 2578-3572
Launched : 2016
Annals of Clinical Pathology
ISSN : 2373-9282
Launched : 2013
Annals of Cardiovascular Diseases
ISSN : 2641-7731
Launched : 2016
Journal of Behavior
ISSN : 2576-0076
Launched : 2016
Annals of Clinical and Experimental Metabolism
ISSN : 2572-2492
Launched : 2016
Clinical Research in Infectious Diseases
ISSN : 2379-0636
Launched : 2013
JSM Microbiology
ISSN : 2333-6455
Launched : 2013
Journal of Urology and Research
ISSN : 2379-951X
Launched : 2014
Journal of Family Medicine and Community Health
ISSN : 2379-0547
Launched : 2013
Annals of Pregnancy and Care
ISSN : 2578-336X
Launched : 2017
JSM Cell and Developmental Biology
ISSN : 2379-061X
Launched : 2013
Annals of Aquaculture and Research
ISSN : 2379-0881
Launched : 2014
Clinical Research in Pulmonology
ISSN : 2333-6625
Launched : 2013
Journal of Immunology and Clinical Research
ISSN : 2333-6714
Launched : 2013
Annals of Forensic Research and Analysis
ISSN : 2378-9476
Launched : 2014
JSM Biochemistry and Molecular Biology
ISSN : 2333-7109
Launched : 2013
Annals of Breast Cancer Research
ISSN : 2641-7685
Launched : 2016
Annals of Gerontology and Geriatric Research
ISSN : 2378-9409
Launched : 2014
Journal of Sleep Medicine and Disorders
ISSN : 2379-0822
Launched : 2014
JSM Burns and Trauma
ISSN : 2475-9406
Launched : 2016
Chemical Engineering and Process Techniques
ISSN : 2333-6633
Launched : 2013
Annals of Clinical Cytology and Pathology
ISSN : 2475-9430
Launched : 2014
JSM Allergy and Asthma
ISSN : 2573-1254
Launched : 2016
Journal of Neurological Disorders and Stroke
ISSN : 2334-2307
Launched : 2013
Annals of Sports Medicine and Research
ISSN : 2379-0571
Launched : 2014
JSM Sexual Medicine
ISSN : 2578-3718
Launched : 2016
Annals of Vascular Medicine and Research
ISSN : 2378-9344
Launched : 2014
JSM Biotechnology and Biomedical Engineering
ISSN : 2333-7117
Launched : 2013
JSM Environmental Science and Ecology
ISSN : 2333-7141
Launched : 2013
Journal of Cardiology and Clinical Research
ISSN : 2333-6676
Launched : 2013
JSM Nanotechnology and Nanomedicine
ISSN : 2334-1815
Launched : 2013
Journal of Ear, Nose and Throat Disorders
ISSN : 2475-9473
Launched : 2016
JSM Ophthalmology
ISSN : 2333-6447
Launched : 2013
Journal of Pharmacology and Clinical Toxicology
ISSN : 2333-7079
Launched : 2013
Annals of Psychiatry and Mental Health
ISSN : 2374-0124
Launched : 2013
Medical Journal of Obstetrics and Gynecology
ISSN : 2333-6439
Launched : 2013
Annals of Pediatrics and Child Health
ISSN : 2373-9312
Launched : 2013
JSM Clinical Pharmaceutics
ISSN : 2379-9498
Launched : 2014
JSM Foot and Ankle
ISSN : 2475-9112
Launched : 2016
JSM Alzheimer's Disease and Related Dementia
ISSN : 2378-9565
Launched : 2014
Journal of Addiction Medicine and Therapy
ISSN : 2333-665X
Launched : 2013
Journal of Veterinary Medicine and Research
ISSN : 2378-931X
Launched : 2013
Annals of Public Health and Research
ISSN : 2378-9328
Launched : 2014
Annals of Orthopedics and Rheumatology
ISSN : 2373-9290
Launched : 2013
Journal of Clinical Nephrology and Research
ISSN : 2379-0652
Launched : 2014
Annals of Community Medicine and Practice
ISSN : 2475-9465
Launched : 2014
Annals of Biometrics and Biostatistics
ISSN : 2374-0116
Launched : 2013
JSM Clinical Case Reports
ISSN : 2373-9819
Launched : 2013
Journal of Cancer Biology and Research
ISSN : 2373-9436
Launched : 2013
Journal of Surgery and Transplantation Science
ISSN : 2379-0911
Launched : 2013
Journal of Dermatology and Clinical Research
ISSN : 2373-9371
Launched : 2013
JSM Gastroenterology and Hepatology
ISSN : 2373-9487
Launched : 2013
Annals of Nursing and Practice
ISSN : 2379-9501
Launched : 2014
JSM Dentistry
ISSN : 2333-7133
Launched : 2013
Author Information X