Loading

Annals of Food Processing and Preservation

Review: Impact of Dry Hopping on Beer Flavor Stability

Review Article | Open Access

  • 1. Department of Viticulture and Enology, University of California, USA
+ Show More - Show Less
Corresponding Authors
Anita Oberholster, Department of Viticulture and Enology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
ABSTRACT

Hops are the flowers of the perennial plant Humuluslupulus and are used primarily as a flavoring and bittering agent in beer. They have also been shown to increase the flavor stability of beer over time. They can be added during different stages of the brewing process. Hops added at the beginning of the boil are deemed bittering hops as they primarily contribute to the bitterness of the finished beer. During the boiling process the majority of their flavor active volatile oils are evaporated. Hops added in the middle or end of the boil are called late hop additions. These hops contribute some bitterness due to isomerization of α-acids (AA) during the boil but are mainly used to deliver hop flavor and aroma into the beer. Hops can also be added immediately after the boil in the whirlpool to impart hoppy aroma. A practice that has gained popularity is dry-hopping. Dry-hopping is the addition of hops to fermented, conditioned beer. Polyphenols and other compounds are known to be extracted during dry hopping and have been shown to contribute to beer bitterness. It is widely accepted that polyphenols increase the reductive potential of beer. They act to delay the degradation of beer over time as well as the production of chemical off-flavors and undesirable sensory attributes. Aged beer is characterized largely by staling attributes such as cardboard and a decrease in bitterness. Many of the compounds associated with beer staling exist in sub-threshold levels in beer. It is the synergistic effects of many compounds in aggregate that create some of the undesirable characteristics of an aged beer. The causes and mechanisms behind beer staling are not well understood and more investigations are needed.

KEYWORDS

• Hops • Beer stability

• Dry hopping

• α-acids

• Polyphenols

• Aldehydes

CITATION

Oberholster A, Titus BM (2016) Review: Impact of Dry Hopping on Beer Flavor Stability. Ann Food Process Preserv 1(1): 1004.

ABBREVIATIONS

IAA: Iso-α-Acids; BMT: 3-Methyl-2-Butene-Thiol; BA: β-Acids; NMR: Nuclear Magnetic Resonance; t-2-N: trans-2- Nonenal; FRAP: Ferric-Reducing Ability Power; RP-HPLC: Reverse Phase High Performance Liquid Chromatography; SPE: Solid Phase Extraction; MS/MS: Tandem Mass Spectrometry; SPME: Headspace Solid Phase Microextraction; GC-MS: Gas Chromatography Mass Spectrometry

INTRODUCTION

Hops, the flower of the female perennial Humulus lupulus, have not always been one of the main ingredients in beer. It wasn’t until the 12th century that we have evidence of hops replacing herbs like mugwort, dandelions and heather as a flavoring agent in beer [1]. Prior to their use in beer, hops were recognized primarily for their medicinal and preservative purposes. They have both antibacterial and sedative qualities as well as high concentrations of phenolic compounds that can act as antioxidants and radical scavengers [2-5]. In addition to their medicinal qualities hops contribute enormously to the flavor and bitterness of beer.

Hop composition and flavor

There are over 80 varieties of hops sold commercially and no two varieties are quite the same. Chemical and sensory analyses of hops have provided evidence for key distinctions of varieties. Aberl and Coelhan performed headspace trap GC/MS and showed some of the key differences between many European varieties [6]. Free terpenoids and thiols were investigated by Kankolongo et al., to elucidate the differences between dual-purpose hops [7]. Differences have been shown in sensory experiments as well by descriptive analysis and free-choice profiling [8,9].

The flavor and bitterness from hops comes from oils and resins packed into its lupulin glands [10]. Efficient extraction of these chemicals relies on the lupulin glands being ruptured by chemical and mechanical means. Most hops grown are processed into pellets to effectively expose these flavor active chemicals. When added into the boil during brewing many groups of chemical compounds are extracted over time. Terpenes, terpenoids, oxygenated sesquiterpenes, polyphenols, sulfur compounds and glycosylated species all contribute to hop-derived aroma [11]. Bitterness in beer is mainly contributed by the isomerized form of compounds called α-acids (AA) which are found in the resin glands of hops (Figure 1)

Figure 1 Adapted schematic of the hypothetical degradation products of iso-humulones in beer following deacylation of the side chain at C2 [64].

Figure 1: Adapted schematic of the hypothetical degradation products of iso-humulones in beer following deacylation of the side chain at C2 [64].

[10]. These compounds are isomerizedduring the boil to form iso-α-acids (IAA) during the brewing process. There are a total of six IAA in beer: cis and trans of isohumulone, iso-cohumulone, and iso-adhumulone - with the cis isomers being more bitter than the trans [12]. A conventionally hopped wort (or unfermented beer) in which only hop pellets or whole flowers are added typically has a ratio of cis to trans acids of about 70:30 [13,14]. In addition to its higher bitterness the cis isomer is also more thermodynamically stable and degrades much slower than the trans [15]. This phenomenon makes the ratio of trans- to cis-isohumulones a metric for beer flavor stability [14]. The IAA in beer can degrade by multiple pathways. Acid-catalyzed degradation, oxidation and photo-oxidation are the most relevant pathways with regards to beer [16]. The proposed mechanism for acid-catalyzed degradation elucidates the relative instability of the trans-IAA over the cis-IAA due to an increased distance of the reacting carbocation and double bond of the isopentenoyl side chain in the reaction [17,18]. Aside from this pathway the well understood flavin sensitized photooxidation of IAAs is another source of degradation. This pathway produces the notorious 3-methyl-2-butene-thiol (MBT) that imparts a characteristic skunky or “light struck” aroma [19,20]. Autoxidation can also degrade IAAs by hydrogen abstraction in the presence of molecular oxygen [21]. This is a prime reason to minimize total packaged oxygen in beer production. Much less is known about the β-acids (BA) in hops. They are thought to contribute in some way, albeit minor, to perceived bitterness. Sensory and chemical analyses have shown that proposed BA oxidation products are bitter in a beer matrix and have relatively low taste recognition thresholds [22]. The proposed mechanism of formation occurs at ambient temperatures in beer and is accelerated in the presence of oxygen and a reducing agent such as glucose or ascorbic acid [23]. The resulting compound, n-hulupone, is water soluble. Identification and quantification of the BA oxidation products in beer has been done by HPLC [24]. Oxidation of BA can occur during wort boiling and can yield bitter compounds [22]. In addition to hop acids, hop-derived polyphenols have also been shown to contribute to perceived bitterness [25].

Timing of hop addition

All of the above mentioned hop-derived compounds are not only introduced during the boil. At any time during the brewing process that hops are added these compounds will be extracted to some degree. A practice that has gained popularity over the past 150 years is dry-hopping. Dry-hopping is the addition of hops to fermented, conditioned beer. This is markedly different to othermethods of hop additions. The most traditional method of hop delivery takes place during the boil and can be thought of as a hot water extraction. Hops added at the beginning of the boil are deemed bittering hops as all of their volatile oils are evaporated during the boil. Hops added in the middle or end of the boil are called late hop additions. These hops contribute some bitterness due to isomerization but are mainly used to deliver hop flavor and aroma into the beer. Hops can also be added immediately after the boil in the whirlpool to impart hoppy aroma. The flavor contribution to beer by late hopping is different to that of dry hopping. The chemical compositions of beers hopped by these methods have been investigated by NMR metabolomics [26]. Since no isomerization takes place during dry hopping, any increase in bitterness contributed by IAA is arguably negligible. This does not mean that dry hopping does not impart bitterness. Polyphenols and other compounds are known to be extracted during dry hopping and have been shown to contribute to beer bitterness [25,27]. This said, bitterness contribution is not at all the primary intent of dry hopping. Dry hopping is performed to increase the “hoppy” aroma of the beer and has seen resurgence in popularity thanks in part to the growth of the craft beer industry in the United States as well as other countries. Since dry hopping is done at relatively low temperatures, the thermal degradation and volatilization of flavor compounds are significantly reduced. This allows for a higher concentration of these compounds in the finished product.

Beer aging

Polyphenols, in particularflavan-3-ols, flavonols and phenolic glycosides, are known antioxidants and antiradicals [28]. Beer aging is largely driven by lipid oxidation, Maillard reactions, Strecker degradation and radical-mediated oxidation [29,30]. It is widely accepted that polyphenols have an effect on the reductive potential of beer. [25,30-34]. They act to retard the degradation of beer over time and the production of chemical off-flavors and undesirable sensory attributes. Aged beer is characterized largely by staling attributes such as cardboard and a decrease in bitterness which may in part be due to the instability of iso-humulones over time or possibly due to the masking effects of sweet flavors [35]. Over time both sweet aroma and taste increase as the concentration of ethyl esters and Maillard Reaction product increase [36-38]. As beer ages there is a fast increase in ribes/black currant character followed by a steady decline. Volatile sulfur compounds have been shown to contribute to this character in beer [39,40]. Lastly, due to lipid oxidation, long chain aldehydes such as trans-2-nonenal (t-2-N) are formed and increase the papery/wet cardboard character of beer [37]. Of the long chain aldehydes, t-2-N is widely considered to contribute the most to this characteristic [41].

Phenolics in beer

Polyphenols, along with other compounds, are extracted during dry hopping at a relatively fast rate. It has been demonstrated that about 80-90% of the polyphenols extracted during dry hopping are extracted within the first 12 hours [11]. This was determined by investigating the ferric-reducing ability power (FRAP) of polyphenols in beer during the dry hopping process. FRAP relies on the phenomenon that polyphenols have the ability to reduce ferric iron. As the demand for beers withmore hop flavor increases brewers will rely on the dry hopping process to help deliver this. Dry hopped beers have more hopderived polyphenols than those that are not dry hopped. Some beers can get almost 50% of the total polyphenolics in the finished beer from hops. This is much more than the average lager where the hops contribute less than 20% [42]. The polyphenols extracted during dry hopping represent a complex matrix of hydroxybenzoic acids, hydroxycinnamic acids, flavonols, proanthocyanidins, prenylchalcones and stilbenes (Figure 2)

Figure 2 Global definitions of the main polyphenols in beer [43].

Figure 2 :Global definitions of the main polyphenols in beer [43].

[43]. The flavan-3-ols have received a lot of attention due to their multifaceted influence on beer quality. Both flavan-3-ol monomers and oligomers play a role in flavor, colloidal and foam stability [44]. They are known to possess both anti-radical and antioxidant capabilities [45-49] and have been shown to have positive effects on the stability of both foods and beverages [49]. Flavan-3-ol monomers complex with proline-rich proteins in beer to form what is known as chill haze. The mechanisms for this process were originally suggested by Siebert and Lynn [50]. A complex network of cross linking occurs between the polyphenols and proline residues from hordein protein from barley [51]. This interaction is pH dependent and uses the many hydroxyl groups on the polyphenols to create bridges from hydrogen bonding. Beer pH and alcohol content is ideal for polyphenol-protein haze formation [52]. The resulting haze is known to appear when the beer is cooled and is common at refrigerator temperatures; thus the name chill haze. Dry hopping is often done after filtration, the latter process removing left-over yeast and particulate matter that can precipitate hop flavor compounds and contribute to flavor modification by biotransformation. The dry hopping process can cause the development of chill haze due to the polyphenols extracted into the beer. This and the fact that some polyphenols, notably gallic acid, have been shown to act as prooxidants demonstrate the dichotomous role of polyphenols in beer [31]. They aid in flavor stability but have the potential to diminish colloidal stability and even increase oxidation in the beer. Beer chill haze has no effect on beer flavor but it is visually displeasing and many breweries go to great lengths to prevent it. Phenolics and specifically flavan-3-ols have been shown to increase the perceived bitterness and “harsh flavor” in beer often associated with astringency [27,53,54]. Dozens of phenolic compounds have been identified and quantified in beer. Beer has been found to be the main source of dietary hydroxybenzoic acids by a European Prospective Investigation into Cancer and Nutrition study [55]. New polyphenolic compounds are still being discovered in beer by advanced analytical methods [56]. The most complete list of phenolics in beer, including various methodologies, was assembled by Callemein and Collin [43]. The most accepted quantitative method for chemical analysis of hop, barley and beer phenolic species is reverse phase high performance liquid chromatography (RP-HPLC) [43]. Both the American Society of Brewing Chemists (ASBC) and the European Brewers Convention (EBC) have standard RP-HPLC methods for measuring phenolics in beer. However, many groups have attempted to quantify polyphenols in beer by RP-HPLC analysis and the reported recoveries after solid phase extraction (SPE) are unacceptably low for some phenolic compounds [57,58]. An alternative method of quantifying polyphenols is by tandem mass spectrometry (MS/MS) after chromatographic separation [56]. The sensitivity of MS/MS allows for the omission of a concentration step by SPE, resulting in increased recoveries.

Chemical staling markers in beer

The production of degradative aldehydes has been investigated as potential stability markers for beer. Malfliet et al., investigated markers for flavor instability in lager beers and concluded that in addition to the T/C ratio, aldehydes, specifically furfural, hexanal, 2-methylpropanal, 2-methylbutanal and 3-methylbutanal, are adequate markers for flavor stability [30]. Aldehydes in beer are produced from many sources including Strecker degradation, Maillard reactions, as well as lipid oxidation and they have been shown by Saison et al., to increase during forced aging of beer [59]. GC-MS analysis of aldehydes in beer can be problematic due to matrix effects and low reproducibility even with derivatization to improve sensitivity. A common derivatization agent used in aldehyde analysis is O-(2,3, 4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA). Moreover, many of the compounds associated with beer staling exist in sub-threshold levels in beer. It is the synergistic effects of many compounds in aggregate that create some of the undesirable characteristics of an aged beer [60]. Oxidative aldehydes can originate from many sources as described above, but not all the major pathways of formation in beer have been confirmed. Although hops may act to retard aldehyde formation, they may also contribute to their production. Iso-humulones have been shown to degrade into 2-methylpropanal, 2-methylbutanal and 3-methylbutanal in model solutions (Figure 1) [61].

Arguably the most important degradative aldehyde found in beer is trans-2-nonenal (t-2-N). This notorious oxidation productof linoleic acid has an extremely low flavor threshold in beer. It can be detected at levels as low as 0.035 µg/L in beer and delivers a distinct wet cardboard flavor [62]. Although t-2-N has been found to deliver the largest contribution to beer staling, it cannot be looked at in isolation. Furfural and hexanal have been investigated alongside t-2-N as potential major contributors to beer staling [63]. More recently, an investigation into the causes of the increase in various aldehydes during aging found a link between thiazolidine compounds and aldehyde production in a model system [64]. The sources, causes and mechanisms behind beer staling are far from wholly understood and more work is needed.

In summary, as the demand for hoppy beers increases, brewers will rely on dry hopping to help deliver this. More than 50% of the polyphenolics in dry-hopped beer can come from the hops. Polyphenolics, and more specifically the flavan-3-ols, can have a multifaceted influence on beer quality as they play an important role in flavor, colloidal and foam stability. Different markers for flavor instability have been identified and the T/C ratio in combination with aldehydes, in particular furfural, hexanal, 2-methylpropanal, 2-methylbutanal, 3-methylbutanal and trans-2-nonenal, have been determined as adequate markers for flavor stability. Further study is needed to improve current methodology in determining specifically aldehyde content as well as to understand the mechanisms and causes of beer staling.

ACKNOWLEDGEMENTS

We thank Barth-Haas Grants and the UC Davis Agriculturaland Environmental Chemistry Graduate Group scholarship for financial support.

REFERENCES
  1. Von Bingen H. Hildegard von Bingen’s Physica. Inner Traditions/Bear & Co., 1998.
  2. Yamaguchi N, Satoh-Yamaguchi K, Ono M. In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine. 2009; 16: 369-376.
  3. Hoyweghen LV, Biendl M, Heyerick A. Radical Scavenging Capacity of hop-derived Products. Brew Sci Monatsschr Brauwiss. 2010; 63: 1-5.
  4. Lermusieau G, Liégeois C, Collin S. Reducing power of hop cultivars and beer ageing. Food Chem. 2001; 72: 413-418.
  5. Bamforth CW, Muller RE, Walker MD. Oxygen and Oxygen Radicals in Malting and Brewing: A Review. J A Soc Brew Chem. 1993; 51: 79-88.
  6. Aberl A, Coelhan M. Determination of volatile compounds in different hop varieties by headspace-trap GC/MS--in comparison with conventional hop essential oil analysis. J Agric Food Chem. 2012; 60: 2785-2792.
  7. Cibaka ML, Gros J, Nizet S, Collin S. Quantitation of selected terpenoids and mercaptans in the dual-purpose hop varieties Amarillo, Citra, Hallertau Blanc, Mosaic, and Sorachi Ace. J Agric Food Chem. 2015; 63: 3022-3300.
  8. Kishimoto T, Wanikawa A, Kono K, Shibata K. Comparison of the odor-active compounds in unhopped beer and beers hopped with different hop varieties. J Agric Food Chem. 2006; 54: 8855-8861.
  9. Donaldson BR, Bamforth CW, Heymann H. Sensory Descriptive Analysis and Free-Choice Profiling of Thirteen Hop Varieties as Whole Cones and After Dry Hopping ofBeer. Am Soc Brew Chem Inc. 2012; 70: 176-181.
  10. Moir M. Hops: A millennium review. J Am Soc Brew Chem. 2000; 58: 131-146.
  11. Wolfe P. A Study of Factors Affecting the Extraction of Flavor When Dry Hopping Beer [dissertation]. Oregon State University. 2012.
  12. Hughes PS, Simpson WJ. Bitterness of Congeners and Stereoisomers of Hop-Derived Bitter Acids Found in Beer. J Am Soc Brew Chem. 1996; 54: 234-237.
  13. Jaskula B, Syryn E, Goiris K, De Rouck G, Van Opstaele F, De Clippeleer. Hopping Technology in Relation to Beer Bitterness Consistency and Flavor Stability. J Am Soc Brew Chem. 2007; 65: 38-46.
  14. Araki S, Takashio M, Shinotsuka K. A new parameter for determination of the extent of staling in beer. J Am Soc Brew Chem. 2002; 60: 26-30.
  15. Schönberger C, Kostelecky T. 125th Anniversary Review: The Role of Hops in Brewing. J Inst Brew. 2011; 117: 259-267.
  16. Steenackers B, De Cooman L, De Vos D. Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: a review. Food Chem. 2015; 172: 742-756.
  17. Intelmann D, Demmer O, Desmer N, Hofmann T. 18O stable isotope labeling, quantitative model experiments, and molecular dynamics simulation studies on the trans-specific degradation of the bitter tasting iso-alpha-acids of beer. J Agric Food Chem. 2009; 57: 11014-11023.
  18. De Cooman L, Aerts G, Overmeire H. Alterations of the Profiles of Iso-a-Acids During Beer Ageing, Marked Instability of Trans-Iso-alpha-Acids and Implications for Beer Bitterness Consistency in Relation to Tetrahydroiso-alpha-Acids. J Inst Brew. 2000; 106: 169-178.
  19. Huvaere K, Andersen ML, Storme M, Van Bocxlaer J, Skibsted LH, De Keukeleire D. Flavin-induced photodecomposition of sulfur-containing amino acids is decisive in the formation of beer lightstruck flavor. Photochem Photobiol Sci. 2006; 5: 961-969.
  20. Huvaere K, Olsen K, Andersen ML, Skibsted LH, Heyerick A, De Keukeleire D. Riboflavin-sensitized photooxidation of isohumulones and derivatives. Photochem Photobiol Sci. 2004; 3: 337-340.
  21. Intelmann D, Hofmann T. On the autoxidation of bitter-tasting iso-alpha-acids in beer. J Agric Food Chem. 2010; 58: 5059-5067.
  22. Haseleu G, Intelmann D, Hofmann T. Identification and RP-HPLC-ESI-MS/MS quantitation of bitter-tasting beta-acid transformation products in beer. J Agric Food Chem. 2009; 57: 7480-7489.
  23. Verzele M, De Keukeleire D. Chemistry and Analysis of Hop and Beer Bitter Acids. Elsevier. 1991; 27.
  24. Taniguchi Y, Matsukura Y, Ozaki H, Nishimura K, Shindo K. Identification and quantification of the oxidation products derived from α-acids and β-acids during storage of hops ( Humulus lupulus L.). J Agric Food Chem. 2013; 61: 3121-3130.
  25.  Mikyška A, Hrabak M. The role of malt and hop polyphenols in beer quality, flavour and haze stability. J Inst Brew. 2002; 108: 78-85.
  26. Benson KH. Metabolomics of Hops and the Brewing Process [dissertation]. University of California Davis. 2014; 77.
  27. McLaughlin IR, Lederer C, Shellhammer TH. Bitterness-Modifying Properties of Hop Polyphenols Extracted from Spent Hop Material. Am Soc Brew Chem. 2008; 66: 174-183.
  28. Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem. 2000; 48: 3396-3402.
  29. Steinhaus M, Schieberle P. Comparison of the most odor-active compounds in fresh and dried hop cones (Humulus lupulus L. variety spalter select) based on GC-olfactometry and odor dilution techniques. J Agric Food Chem. 2000; 48: 1776-1783.
  30. Malfliet S, Van Opstaele F, De Clippeleer J, Syryn E, Goiris K, De Cooman L, et al. Flavour Instability of Pale Lager Beers : Determination of Analytical Markers in Relation to Sensory Ageing. J Inst Brew. 2008; 114: 180-192.
  31. Irwin AJ, Barker RL, Pipasts P. The Role of Copper, Oxygen, and Polyphenols in Beer Flavor Instability. J Am Soc Brew Chem. 1991; 49: 140-149.
  32. Jaskula-Goiris B, Goiris K, Syryn E, Van Opstaele F, De Rouck G, Aerts G, et al. The Use of Hop Polyphenols During Brewing to Improve Flavor Quality and Stability of Pilsner Beer. Am Soc Brew Chem. 2014; 72: 175-183.
  33. Aron P, Shellhammer TH. A discussion of polyphenols in beer physical and flavour stability. J Am Soc Brew Chem. 2010; 116: 369-380.
  34. Zhao H, Chen W, Lu J, Zhao M. Phenolic profiles and antioxidant activities of commercial beers. Food Chem. 2010; 119: 1150-1158.
  35. Dalgliesh CE. Flavour stability. Proc Congr Eur Brew Conv. 1977; 9: 623-659.
  36. Vanderhaegen B, Delvaux F, Daenen L, Verachtert H, Delvaux FR. Aging characteristics of different beer types. Food Chem. 2007; 103: 404-412.
  37. Vanderhaegen B, Neven H, Verachtert H, Derdelinckx G. The chemistry of beer aging a critical review. Food Chem. 2006; 95: 357-381.
  38. Meilgaard MC. Flavor chemistry in beer: Part II: Flavor and flavor threshold of 239 aroma volatiles. Master Brew Assoc Am Tech Q. 1975; 12: 151-168.
  39. Schieberle P. Primary odorants of pale lager beer. Zeitschrift fǘr Leb Und-Forshcung. 1991; 193: 558-565.
  40. Tran TTH, Nizet S, Gros J, Collin S. Occurrence of the ribes odorant 3-sulfanyl-3-methylbutyl formate in aged beers. Flavour Fragr J. 2013; 28: 174-179.
  41. Saison D, De Schutter DP, Uyttenhove B, Delvaux F, Delvaux FR. Contribution of staling compounds to the aged flavour of lager beer by studying their flavour thresholds. Food Chem. 2009; 114: 1206-1215.
  42. Callemien D, Collin S. Use of RP-HPLC-ESI (–) -MS / MS to Differentiate Various Proanthocyanidin Isomers in Lager Beer Extracts. J Am Soc Brew Chem. 2008; 66: 109-115.
  43. Callemien D, Collin S. Structure, Organoleptic Properties, Quantification Methods, and Stability of Phenolic Compounds in Beerâ A Review. Food Rev Int. 2010; 26: 1-84.
  44.  Dvorakova M, Moreira MM, Dostalek P, Skulilova Z, Guido LF, Barros AA. Characterization of monomeric and oligomeric flavan-3-ols from barley and malt by liquid chromatography-ultraviolet detection-electrospray ionization mass spectrometry. J Chromatogr. 2008; 1189: 398-405.
  45. Scott BC, Butler J, Halliwell B, Aruoma OI. Evaluation of the antioxidant actions of ferulic acid and catechins. Free Radic Res Commun. 1993; 19: 241-253.
  46. Terao J, Piskula M, Yao Q. Protective Effects of Epicatechin, Epicatechin Gallate, and Quercetin on Lipid Peroxidation in Phospholipid Bilayers. Arch Biochem Biophys. 1994; 308: 278-284.
  47. Plumb GW, De Pascual-teresa S, Santos-buelga C, Cheynier V, Williamson G. Antioxidant Properties of Catechins and Proanthocyanidins: Effect of Polymerisation, Galloylation and Glycosylation. Free Radic Res. 1998; 29: 351-358.
  48. Saint-Cricq De Gaulejac N, Provost C, Vivas N. Comparative study of polyphenol scavenging activities assessed by different methods. J Agric Food Chem. 1999; 47: 425-431.
  49. Aron PM, Kennedy JA. Flavan-3-ols: nature, occurrence and biological activity. Mol Nutr Food Res. 2008; 52: 79-104.
  50. Siebert KJ, Lynn PY. Mechanisms of Beer Colloidal Stabilization. J Am Soc Brew. Chem.1997; 55: 73-78.
  51. Asano K, Shinagawa K, Hashimoto N. Characterization of Haze-Forming Proteins of Beer and Their Roles in Chill Haze Formation1. J Am Soc Brew Chem. 1982; 40: 147-154.
  52. Siebert KJ, Lynn PY. Effects of alcohol and pH on protein-polyphenol haze intensity and particle size. J Am Soc Brew Chem. 2003; 61: 88-98.
  53. Delcour JA, Vandenberghe MM, Corten PF, Dondeyne P. Flavor Thresholds of Polyphenolics in Water. Am J Enol Vitic. 1984; 35: 134-136.
  54. Delcour JA, Schoeters MM, Meysman EW, Dondeyne P, Moerman E. The Intrinsic Influence of Catechins and Procyanidins on Beer Haze Formation. J Inst Brew. 1984; 90: 381-384.
  55. Zamora-Ros R, Rothwell JA, Scalbert A, Knaze V, Romieu I, Slimani N, et al. Dietary intakes and food sources of phenolic acids in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br J Nutr. 2013; 110: 1500-1511.
  56.  Quifer-Rada P, Vallverdú-Queralt A, Martínez-Huélamo M, Chiva-Blanch G, Jáuregui O, Estruch R, et al. A comprehensive characterisation of beer polyphenols by high resolution mass spectrometry (LC-ESI-LTQ-Orbitrap-MS). Food Chem. 2015; 169: 336-343.
  57.  Dvorakova M, Hulin P, Karabin M, Dostalek P. Determination of Polyphenols in Beer by an Effective Method Based on Solid-Phase Extraction and High Performance Liquid Chromatography with Diode-Array Detection. Czech J Food Sci. 2007; 25: 182-188.
  58.  García AA, Cancho Grande B, Gándara JS. Development of a rapid method based on solid-phase extraction and liquid chromatography with ultraviolet absorbance detection for the determination of polyphenols in alcohol-free beers. J Chromatogr A. 2004; 1054: 175-180.
  59. Saison D, De Schutter DP, Delvaux F, Delvaux FR. Optimisation of a complete method for the analysis of volatiles involved in the flavour stability of beer by solid-phase microextraction in combination with gas chromatography and mass spectrometry. J Chromatogr A. 2008; 1190: 342-349.
  60. Laws DRJ, Peppard TL. The stability of flavour constituents in alcoholic beverages. Food Chem. 1982; 9: 131-146.
  61. Hashimoto N, Eshima T. Composition and pathway of formation of stale aldehydes in bottled beer. J Am Soc Brew Chem. 1977; 35: 145-150.
  62. Meilgaard MC. Individual differences in sensory threshold for aroma chemicals added to beer. Food Qual Prefer. 1993; 4: 153-167.
  63. Techakriengkrai I, Paterson A, Taidi B. Relationship of sensory staleness in two lagers to headspace concentrations of trans-2-nonenal and three staling aldehydes. J Inst Brew. 2006; 112: 36-40.
  64. Baert JJ, De Clippeleer J, De Cooman L, Aerts G, Leuven KU. Exploring the Binding Behavior of Beer Staling Aldehydes in Model Systems. Am Soc Brew Chem. 2015; 73: 100-108.
Received : 09 Sep 2016
Accepted : 19 Sep 2016
Published : 21 Sep 2016
Journals
Annals of Otolaryngology and Rhinology
ISSN : 2379-948X
Launched : 2014
JSM Schizophrenia
Launched : 2016
Journal of Nausea
Launched : 2020
JSM Internal Medicine
Launched : 2016
JSM Hepatitis
Launched : 2016
JSM Oro Facial Surgeries
ISSN : 2578-3211
Launched : 2016
Journal of Human Nutrition and Food Science
ISSN : 2333-6706
Launched : 2013
JSM Regenerative Medicine and Bioengineering
ISSN : 2379-0490
Launched : 2013
JSM Spine
ISSN : 2578-3181
Launched : 2016
Archives of Palliative Care
ISSN : 2573-1165
Launched : 2016
JSM Nutritional Disorders
ISSN : 2578-3203
Launched : 2017
Annals of Neurodegenerative Disorders
ISSN : 2476-2032
Launched : 2016
Journal of Fever
ISSN : 2641-7782
Launched : 2017
JSM Bone Marrow Research
ISSN : 2578-3351
Launched : 2016
JSM Mathematics and Statistics
ISSN : 2578-3173
Launched : 2014
Journal of Autoimmunity and Research
ISSN : 2573-1173
Launched : 2014
JSM Arthritis
ISSN : 2475-9155
Launched : 2016
JSM Head and Neck Cancer-Cases and Reviews
ISSN : 2573-1610
Launched : 2016
JSM General Surgery Cases and Images
ISSN : 2573-1564
Launched : 2016
JSM Anatomy and Physiology
ISSN : 2573-1262
Launched : 2016
JSM Dental Surgery
ISSN : 2573-1548
Launched : 2016
Annals of Emergency Surgery
ISSN : 2573-1017
Launched : 2016
Annals of Mens Health and Wellness
ISSN : 2641-7707
Launched : 2017
Journal of Preventive Medicine and Health Care
ISSN : 2576-0084
Launched : 2018
Journal of Chronic Diseases and Management
ISSN : 2573-1300
Launched : 2016
Annals of Vaccines and Immunization
ISSN : 2378-9379
Launched : 2014
JSM Heart Surgery Cases and Images
ISSN : 2578-3157
Launched : 2016
Annals of Reproductive Medicine and Treatment
ISSN : 2573-1092
Launched : 2016
JSM Brain Science
ISSN : 2573-1289
Launched : 2016
JSM Biomarkers
ISSN : 2578-3815
Launched : 2014
JSM Biology
ISSN : 2475-9392
Launched : 2016
Archives of Stem Cell and Research
ISSN : 2578-3580
Launched : 2014
Annals of Clinical and Medical Microbiology
ISSN : 2578-3629
Launched : 2014
JSM Pediatric Surgery
ISSN : 2578-3149
Launched : 2017
Journal of Memory Disorder and Rehabilitation
ISSN : 2578-319X
Launched : 2016
JSM Tropical Medicine and Research
ISSN : 2578-3165
Launched : 2016
JSM Head and Face Medicine
ISSN : 2578-3793
Launched : 2016
JSM Cardiothoracic Surgery
ISSN : 2573-1297
Launched : 2016
JSM Bone and Joint Diseases
ISSN : 2578-3351
Launched : 2017
JSM Bioavailability and Bioequivalence
ISSN : 2641-7812
Launched : 2017
JSM Atherosclerosis
ISSN : 2573-1270
Launched : 2016
Journal of Genitourinary Disorders
ISSN : 2641-7790
Launched : 2017
Journal of Fractures and Sprains
ISSN : 2578-3831
Launched : 2016
Journal of Autism and Epilepsy
ISSN : 2641-7774
Launched : 2016
Annals of Marine Biology and Research
ISSN : 2573-105X
Launched : 2014
JSM Health Education & Primary Health Care
ISSN : 2578-3777
Launched : 2016
JSM Communication Disorders
ISSN : 2578-3807
Launched : 2016
Annals of Musculoskeletal Disorders
ISSN : 2578-3599
Launched : 2016
Annals of Virology and Research
ISSN : 2573-1122
Launched : 2014
JSM Renal Medicine
ISSN : 2573-1637
Launched : 2016
Journal of Muscle Health
ISSN : 2578-3823
Launched : 2016
JSM Genetics and Genomics
ISSN : 2334-1823
Launched : 2013
JSM Anxiety and Depression
ISSN : 2475-9139
Launched : 2016
Clinical Journal of Heart Diseases
ISSN : 2641-7766
Launched : 2016
Annals of Medicinal Chemistry and Research
ISSN : 2378-9336
Launched : 2014
JSM Pain and Management
ISSN : 2578-3378
Launched : 2016
JSM Women's Health
ISSN : 2578-3696
Launched : 2016
Clinical Research in HIV or AIDS
ISSN : 2374-0094
Launched : 2013
Journal of Endocrinology, Diabetes and Obesity
ISSN : 2333-6692
Launched : 2013
Journal of Substance Abuse and Alcoholism
ISSN : 2373-9363
Launched : 2013
JSM Neurosurgery and Spine
ISSN : 2373-9479
Launched : 2013
Journal of Liver and Clinical Research
ISSN : 2379-0830
Launched : 2014
Journal of Drug Design and Research
ISSN : 2379-089X
Launched : 2014
JSM Clinical Oncology and Research
ISSN : 2373-938X
Launched : 2013
JSM Bioinformatics, Genomics and Proteomics
ISSN : 2576-1102
Launched : 2014
JSM Chemistry
ISSN : 2334-1831
Launched : 2013
Journal of Trauma and Care
ISSN : 2573-1246
Launched : 2014
JSM Surgical Oncology and Research
ISSN : 2578-3688
Launched : 2016
Journal of Radiology and Radiation Therapy
ISSN : 2333-7095
Launched : 2013
JSM Physical Medicine and Rehabilitation
ISSN : 2578-3572
Launched : 2016
Annals of Clinical Pathology
ISSN : 2373-9282
Launched : 2013
Annals of Cardiovascular Diseases
ISSN : 2641-7731
Launched : 2016
Journal of Behavior
ISSN : 2576-0076
Launched : 2016
Annals of Clinical and Experimental Metabolism
ISSN : 2572-2492
Launched : 2016
Clinical Research in Infectious Diseases
ISSN : 2379-0636
Launched : 2013
JSM Microbiology
ISSN : 2333-6455
Launched : 2013
Journal of Urology and Research
ISSN : 2379-951X
Launched : 2014
Journal of Family Medicine and Community Health
ISSN : 2379-0547
Launched : 2013
Annals of Pregnancy and Care
ISSN : 2578-336X
Launched : 2017
JSM Cell and Developmental Biology
ISSN : 2379-061X
Launched : 2013
Annals of Aquaculture and Research
ISSN : 2379-0881
Launched : 2014
Clinical Research in Pulmonology
ISSN : 2333-6625
Launched : 2013
Journal of Immunology and Clinical Research
ISSN : 2333-6714
Launched : 2013
Annals of Forensic Research and Analysis
ISSN : 2378-9476
Launched : 2014
JSM Biochemistry and Molecular Biology
ISSN : 2333-7109
Launched : 2013
Annals of Breast Cancer Research
ISSN : 2641-7685
Launched : 2016
Annals of Gerontology and Geriatric Research
ISSN : 2378-9409
Launched : 2014
Journal of Sleep Medicine and Disorders
ISSN : 2379-0822
Launched : 2014
JSM Burns and Trauma
ISSN : 2475-9406
Launched : 2016
Chemical Engineering and Process Techniques
ISSN : 2333-6633
Launched : 2013
Annals of Clinical Cytology and Pathology
ISSN : 2475-9430
Launched : 2014
JSM Allergy and Asthma
ISSN : 2573-1254
Launched : 2016
Journal of Neurological Disorders and Stroke
ISSN : 2334-2307
Launched : 2013
Annals of Sports Medicine and Research
ISSN : 2379-0571
Launched : 2014
JSM Sexual Medicine
ISSN : 2578-3718
Launched : 2016
Annals of Vascular Medicine and Research
ISSN : 2378-9344
Launched : 2014
JSM Biotechnology and Biomedical Engineering
ISSN : 2333-7117
Launched : 2013
Journal of Hematology and Transfusion
ISSN : 2333-6684
Launched : 2013
JSM Environmental Science and Ecology
ISSN : 2333-7141
Launched : 2013
Journal of Cardiology and Clinical Research
ISSN : 2333-6676
Launched : 2013
JSM Nanotechnology and Nanomedicine
ISSN : 2334-1815
Launched : 2013
Journal of Ear, Nose and Throat Disorders
ISSN : 2475-9473
Launched : 2016
JSM Ophthalmology
ISSN : 2333-6447
Launched : 2013
Journal of Pharmacology and Clinical Toxicology
ISSN : 2333-7079
Launched : 2013
Annals of Psychiatry and Mental Health
ISSN : 2374-0124
Launched : 2013
Medical Journal of Obstetrics and Gynecology
ISSN : 2333-6439
Launched : 2013
Annals of Pediatrics and Child Health
ISSN : 2373-9312
Launched : 2013
JSM Clinical Pharmaceutics
ISSN : 2379-9498
Launched : 2014
JSM Foot and Ankle
ISSN : 2475-9112
Launched : 2016
JSM Alzheimer's Disease and Related Dementia
ISSN : 2378-9565
Launched : 2014
Journal of Addiction Medicine and Therapy
ISSN : 2333-665X
Launched : 2013
Journal of Veterinary Medicine and Research
ISSN : 2378-931X
Launched : 2013
Annals of Public Health and Research
ISSN : 2378-9328
Launched : 2014
Annals of Orthopedics and Rheumatology
ISSN : 2373-9290
Launched : 2013
Journal of Clinical Nephrology and Research
ISSN : 2379-0652
Launched : 2014
Annals of Community Medicine and Practice
ISSN : 2475-9465
Launched : 2014
Annals of Biometrics and Biostatistics
ISSN : 2374-0116
Launched : 2013
JSM Clinical Case Reports
ISSN : 2373-9819
Launched : 2013
Journal of Cancer Biology and Research
ISSN : 2373-9436
Launched : 2013
Journal of Surgery and Transplantation Science
ISSN : 2379-0911
Launched : 2013
Journal of Dermatology and Clinical Research
ISSN : 2373-9371
Launched : 2013
JSM Gastroenterology and Hepatology
ISSN : 2373-9487
Launched : 2013
Annals of Nursing and Practice
ISSN : 2379-9501
Launched : 2014
JSM Dentistry
ISSN : 2333-7133
Launched : 2013
Author Information X